WAVELET-BASED ESTIMATOR FOR THE HURST PARAMETERS OF FRACTIONAL BROWNIAN SHEET

被引:0
|
作者
Wu, Liang [1 ,2 ]
Ding, Yiming [3 ,4 ]
机构
[1] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Wuhan Inst Technol, Dept Math, Wuhan 430070, Peoples R China
[4] Chinese Acad Sci, Wuhan Inst Phys & Math, Key Lab Magnet Resonance Biol Syst, Wuhan 430071, Peoples R China
关键词
detection of long-range dependence; self-similarity; Hurst parameters; wavelet analysis; fractional Brownian sheet; TEXTURE ANALYSIS; RANDOM-FIELDS; MOTION; COEFFICIENTS; MODELS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proposed a class of statistical estimators (H) over cap = ((H) over cap (1), . . . ,(H-d) over cap) for the Hurst parameters H = (H-1, . . . , H-d) of fractional Brownian field via multi-dimensional wavelet analysis and least squares, which are asymptotically normal. These estimators can be used to detect self -similarity and long-range dependence in multi-dimensional signals, which is important in texture classification and improvement of diffusion tensor imaging (DTI) of nuclear magnetic resonance (NMR). Some fractional Brownian sheets will be simulated and the simulated data are used to validate these estimators. We find that when H-i >= 1/2, the estimators. are accurate, and when H-i < 1/2, there are some bias.
引用
收藏
页码:205 / 222
页数:18
相关论文
共 50 条
  • [41] A WAVELET-BASED ERROR ESTIMATOR AND AN ADAPTIVE SCHEME FOR PLATE BENDING PROBLEMS
    Li, Bing
    Chen, Xuefeng
    He, Zhengjia
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2010, 7 (02) : 241 - 259
  • [42] Adaptive wavelet-based estimator of the memory parameter for stationary Gaussian processes
    Bardet, Jean-Marc
    Bibi, Hatem
    Jouini, Abdellatif
    [J]. BERNOULLI, 2008, 14 (03) : 691 - 724
  • [43] Semiparametric Wavelet-Based JPEG IV Estimator for Endogenously Truncated Data
    Billfeld, Nir
    Kim, Moshe
    [J]. IEEE ACCESS, 2019, 7 : 99602 - 99621
  • [44] Wavelet-based Bayesian estimator for Poisson noise removal from images
    Huang, X
    Madoc, AC
    Cheetham, AD
    [J]. 2003 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL I, PROCEEDINGS, 2003, : 593 - 596
  • [45] Modeling multivariate volatility using wavelet-based realized covariance estimator
    Barunik, Jozef
    Vacha, Lukas
    [J]. PROCEEDINGS OF THE 29TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS 2011, PTS I AND II, 2011, : 29 - 34
  • [46] Image multi-noise removal by wavelet-based Bayesian estimator
    Huang, X
    Madoc, AC
    Cheetham, AD
    [J]. 2005 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), VOLS 1-6, CONFERENCE PROCEEDINGS, 2005, : 2699 - 2702
  • [47] Confidence intervals for the Hurst parameter of a fractional Brownian motion based on finite sample size
    Breton J.-C.
    Coeurjolly J.-F.
    [J]. Statistical Inference for Stochastic Processes, 2012, 15 (1) : 1 - 26
  • [48] Wavelet-based functional reconstruction and extrapolation of fractional random fields
    Rosaura Fernández-Pascual
    María D. Ruiz-Medina
    Jose M. Angulo
    [J]. Test, 2004, 13 : 417 - 444
  • [49] Haar Wavelet-Based Simulation of the Fractional-Order Systems
    Li, Yuan-lu
    Ge, Hua-min
    Zhao, Wei-wei
    [J]. 2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 3506 - 3509
  • [50] Wavelet-based functional reconstruction and extrapolation of fractional random fields
    Fernández-Pascual, R
    Ruiz-Medina, MD
    Angulo, JM
    [J]. TEST, 2004, 13 (02) : 417 - 444