WAVELET-BASED ESTIMATOR FOR THE HURST PARAMETERS OF FRACTIONAL BROWNIAN SHEET

被引:0
|
作者
Wu, Liang [1 ,2 ]
Ding, Yiming [3 ,4 ]
机构
[1] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Wuhan Inst Technol, Dept Math, Wuhan 430070, Peoples R China
[4] Chinese Acad Sci, Wuhan Inst Phys & Math, Key Lab Magnet Resonance Biol Syst, Wuhan 430071, Peoples R China
关键词
detection of long-range dependence; self-similarity; Hurst parameters; wavelet analysis; fractional Brownian sheet; TEXTURE ANALYSIS; RANDOM-FIELDS; MOTION; COEFFICIENTS; MODELS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proposed a class of statistical estimators (H) over cap = ((H) over cap (1), . . . ,(H-d) over cap) for the Hurst parameters H = (H-1, . . . , H-d) of fractional Brownian field via multi-dimensional wavelet analysis and least squares, which are asymptotically normal. These estimators can be used to detect self -similarity and long-range dependence in multi-dimensional signals, which is important in texture classification and improvement of diffusion tensor imaging (DTI) of nuclear magnetic resonance (NMR). Some fractional Brownian sheets will be simulated and the simulated data are used to validate these estimators. We find that when H-i >= 1/2, the estimators. are accurate, and when H-i < 1/2, there are some bias.
引用
收藏
页码:205 / 222
页数:18
相关论文
共 50 条
  • [31] A wavelet-based approach to the estimation of the Hurst parameter for self-similar data
    Giordano, S
    Miduri, S
    Pagano, M
    Russo, F
    Tartarelli, S
    [J]. DSP 97: 1997 13TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING PROCEEDINGS, VOLS 1 AND 2: SPECIAL SESSIONS, 1997, : 479 - 482
  • [32] Singularity of fractional Brownian motions with different Hurst indices
    Rao, B. L. S. Prakasa
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2008, 26 (02) : 334 - 337
  • [33] Identification of the Hurst Index of a Step Fractional Brownian Motion
    Albert Benassi
    Pierre Bertrand
    Serge Cohen
    Jacques Istas
    [J]. Statistical Inference for Stochastic Processes, 2000, 3 (1-2) : 101 - 111
  • [34] Method for Estimating the Hurst Exponent of Fractional Brownian Motion
    Savitskii, A. V.
    [J]. DOKLADY MATHEMATICS, 2019, 100 (03) : 564 - 567
  • [35] Bayesian estimation of the Hurst parameter of fractional Brownian motion
    Chen, Chen-Yueh
    Shafie, Khalil
    Lin, Yen-Kuang
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (06) : 4760 - 4766
  • [36] Hurst exponents, Markov processes, and fractional Brownian motion
    McCauley, Joseph L.
    Gunaratne, Gemunu H.
    Bassler, Kevin E.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (01) : 1 - 9
  • [37] Simulation of Fractional Brownian Motion and Estimation of Hurst Parameter
    Pashko, Anatolii
    Sinyayska, Olga
    Oleshko, Tetiana
    [J]. 15TH INTERNATIONAL CONFERENCE ON ADVANCED TRENDS IN RADIOELECTRONICS, TELECOMMUNICATIONS AND COMPUTER ENGINEERING (TCSET - 2020), 2020, : 632 - 637
  • [38] Method for Estimating the Hurst Exponent of Fractional Brownian Motion
    A. V. Savitskii
    [J]. Doklady Mathematics, 2019, 100 : 564 - 567
  • [39] REMOVAL FOR IMAGES IN NAKAGAMI FADING CHANNELS BY WAVELET-BASED BAYESIAN ESTIMATOR
    Huang, Xu
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-4, 2008, : 21 - 24
  • [40] Covid-19 impact on cryptocurrencies: Evidence from a wavelet-based Hurst exponent
    Belen Arouxet, M.
    Bariviera, Aurelio F.
    Pastor, Veronica E.
    Vampa, Victoria
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 596