Some Optimal Convex Combination Bounds for Arithmetic Mean

被引:0
|
作者
Gao Hongya [1 ]
Xue Ruihong [1 ]
机构
[1] Hebei Univ, Coll Math & Comp Sci, Baoding 071002, Peoples R China
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2014年 / 54卷 / 04期
关键词
Optimal convex combination bound; arithmetic mean; harmonic mean; geometric mean; the second Seiffert mean;
D O I
10.5666/KMJ.2014.54.4.521
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we derive some optimal convex combination bounds related to arithmetic mean. We find the greatest values alpha(1) and alpha(2) and the least values beta(1) and beta(2) such that the double inequalities T-alpha 1 (a, b) + (1 - alpha(1)) H (a, b) < A(a, b) < beta T-1 (a, b) (1 - beta(1))H(a, b) and T-alpha 2 (a, b) + (1 -alpha(2))G(a, b) < A(a, b) < beta T-2(a, b) + (1 - beta 2)G(a, b) holds for all a, b > 0 with a not equal b. Here T (a, b), H (a, b), A(a,b) and G(a,b) denote the second Seiffert, harmonic, arithmetic and geometric means of two positive numbers a and b, respectively.
引用
收藏
页码:521 / 529
页数:9
相关论文
共 50 条