Optimal bounds for Neuman-Sándor mean in terms of the geometric convex combination of two Seiffert means

被引:0
|
作者
Hua-Ying Huang
Nan Wang
Bo-Yong Long
机构
[1] Anhui University,School of Mathematical Science
关键词
Neuman-Sándor mean; the first Seiffert mean; the second Seiffert mean; 26E60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we find the least value α and the greatest value β such that the double inequality Pα(a,b)T1−α(a,b)<M(a,b)<Pβ(a,b)T1−β(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{\alpha}(a,b)T^{1-\alpha}(a,b)< M(a,b)< P^{\beta}(a,b)T^{1-\beta}(a,b) $$\end{document} holds for all a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a,b>0$\end{document} with a≠b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a\neq b$\end{document}, where M(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M(a,b)$\end{document}, P(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P(a,b)$\end{document}, and T(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T(a,b)$\end{document} are the Neuman-Sándor, the first and second Seiffert means of two positive numbers a and b, respectively.
引用
收藏
相关论文
共 50 条
  • [1] Optimal bounds for Neuman-Sándor mean in terms of the convex combination of the logarithmic and the second Seiffert means
    Jing-Jing Chen
    Jian-Jun Lei
    Bo-Yong Long
    Journal of Inequalities and Applications, 2017
  • [2] SHARP BOUNDS FOR NEUMAN-SNDOR MEAN IN TERMS OF THE CONVEX COMBINATION OF QUADRATIC AND FIRST SEIFFERT MEANS
    褚玉明
    赵铁洪
    宋迎清
    Acta Mathematica Scientia, 2014, 34 (03) : 797 - 806
  • [3] Optimal bounds for the Neuman-Sándor mean in terms of the first Seiffert and quadratic means
    Wei-Ming Gong
    Xu-Hui Shen
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2013
  • [4] Optimal bounds for Neuman-Sandor mean in terms of the geometric convex combination of two Seiffert means
    Huang, Hua-Ying
    Wang, Nan
    Long, Bo-Yong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 11
  • [5] Sharp bounds for Seiffert and Neuman-Sándor means in terms of generalized logarithmic means
    Yu-Ming Chu
    Bo-Yong Long
    Wei-Ming Gong
    Ying-Qing Song
    Journal of Inequalities and Applications, 2013
  • [6] Optimal Bounds for the Neuman-Sandor Mean in terms of the Convex Combination of the First and Second Seiffert Means
    Cui, Hao-Chuan
    Wang, Nan
    Long, Bo-Yong
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [7] Optimal bounds for Neuman-Sandor mean in terms of the convex combination of the logarithmic and the second Seiffert means
    Chen, Jing-Jing
    Lei, Jian-Jun
    Long, Bo-Yong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [8] OPTIMAL CONVEX COMBINATION BOUNDS OF SEIFFERT AND GEOMETRIC MEANS FOR THE ARITHMETIC MEAN
    Chu, Yu-Ming
    Zong, Cheng
    Wang, Gen-Di
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2011, 5 (03): : 429 - 434
  • [9] Sharp bounds for Neuman-Sándor’s mean in terms of the root-mean-square
    Wei-Dong Jiang
    Feng Qi
    Periodica Mathematica Hungarica, 2014, 69 : 134 - 138
  • [10] OPTIMAL BOUNDS FOR THE FIRST SEIFFERT MEAN IN TERMS OF THE CONVEX COMBINATION OF THE LOGARITHMIC AND NEUMAN-SANDOR MEAN
    Lei, Jian-Jun
    Chen, Jing-Jing
    Long, Bo-Yong
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (02): : 365 - 377