Optimal bounds for Neuman-Sándor mean in terms of the geometric convex combination of two Seiffert means

被引:0
|
作者
Hua-Ying Huang
Nan Wang
Bo-Yong Long
机构
[1] Anhui University,School of Mathematical Science
关键词
Neuman-Sándor mean; the first Seiffert mean; the second Seiffert mean; 26E60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we find the least value α and the greatest value β such that the double inequality Pα(a,b)T1−α(a,b)<M(a,b)<Pβ(a,b)T1−β(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{\alpha}(a,b)T^{1-\alpha}(a,b)< M(a,b)< P^{\beta}(a,b)T^{1-\beta}(a,b) $$\end{document} holds for all a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a,b>0$\end{document} with a≠b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a\neq b$\end{document}, where M(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M(a,b)$\end{document}, P(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P(a,b)$\end{document}, and T(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T(a,b)$\end{document} are the Neuman-Sándor, the first and second Seiffert means of two positive numbers a and b, respectively.
引用
收藏
相关论文
共 50 条
  • [21] Optimal Bounds for Neuman-Sandor Mean in Terms of the Convex Combinations of Harmonic, Geometric, Quadratic, and Contraharmonic Means
    Zhao, Tie-Hong
    Chu, Yu-Ming
    Liu, Bao-Yu
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [22] Sharp bounds for Sándor mean in terms of arithmetic, geometric and harmonic means
    Wei-Mao Qian
    Yu-Ming Chu
    Xiao-Hui Zhang
    Journal of Inequalities and Applications, 2015
  • [23] Sharp Power Mean Bounds for the Combination of Seiffert and Geometric Means
    Chu, Yu-Ming
    Qiu, Ye-Fang
    Wang, Miao-Kun
    ABSTRACT AND APPLIED ANALYSIS, 2010,
  • [24] Optimal bounds for Neuman means in terms of geometric, arithmetic and quadratic means
    Wei-Mao Qian
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2014
  • [25] Optimal bounds for Neuman means in terms of geometric, arithmetic and quadratic means
    Qian, Wei-Mao
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [26] OPTIMAL BOUNDS FOR NEUMAN-SANDOR MEAN IN TERMS OF THE CONVEX COMBINATION OF LOGARITHMIC AND QUADRATIC OR CONTRA-HARMONIC MEANS
    Chu, Yuming
    Zhao, Tiehong
    Liu, Baoyu
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (02): : 201 - 217
  • [27] Optimal bounds for two Sándor-type means in terms of power means
    Tie-Hong Zhao
    Wei-Mao Qian
    Ying-Qing Song
    Journal of Inequalities and Applications, 2016
  • [28] OPTIMAL BOUNDS FOR THE SANDOR MEAN IN TERMS OF THE COMBINATION OF GEOMETRIC AND ARITHMETIC MEANS
    Qian, Wei-Mao
    Ma, Chun-Lin
    Xu, Hui-Zuo
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (02): : 667 - 674
  • [29] Bounds for the Combinations of Neuman-Sandor, Arithmetic, and Second Seiffert Means in terms of Contraharmonic Mean
    He, Zai-Yin
    Qian, Wei-Mao
    Jiang, Yun-Liang
    Song, Ying-Qing
    Chu, Yu-Ming
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [30] Optimal Bounds for Seiffert Mean in terms of One-Parameter Means
    Hu, Hua-Nan
    Tu, Guo-Yan
    Chu, Yu-Ming
    JOURNAL OF APPLIED MATHEMATICS, 2012,