Optimal bounds for Neuman-Sándor mean in terms of the geometric convex combination of two Seiffert means

被引:0
|
作者
Hua-Ying Huang
Nan Wang
Bo-Yong Long
机构
[1] Anhui University,School of Mathematical Science
关键词
Neuman-Sándor mean; the first Seiffert mean; the second Seiffert mean; 26E60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we find the least value α and the greatest value β such that the double inequality Pα(a,b)T1−α(a,b)<M(a,b)<Pβ(a,b)T1−β(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{\alpha}(a,b)T^{1-\alpha}(a,b)< M(a,b)< P^{\beta}(a,b)T^{1-\beta}(a,b) $$\end{document} holds for all a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a,b>0$\end{document} with a≠b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a\neq b$\end{document}, where M(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M(a,b)$\end{document}, P(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P(a,b)$\end{document}, and T(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T(a,b)$\end{document} are the Neuman-Sándor, the first and second Seiffert means of two positive numbers a and b, respectively.
引用
收藏
相关论文
共 50 条
  • [31] Optimal two-parameter geometric and arithmetic mean bounds for the Sándor–Yang mean
    Wei-Mao Qian
    Yue-Ying Yang
    Hong-Wei Zhang
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2019
  • [32] SHARP BOUNDS FOR SEIFFERT MEAN IN TERMS OF WEIGHTED POWER MEANS OF ARITHMETIC MEAN AND GEOMETRIC MEAN
    Yang, Zhen-Hang
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (02): : 499 - 511
  • [33] THE OPTIMAL CONVEX COMBINATION BOUNDS OF ARITHMETIC AND HARMONIC MEANS IN TERMS OF POWER MEAN
    Xia, We-Feng
    Janous, Walther
    Chu, Yu-Ming
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2012, 6 (02): : 241 - 248
  • [34] Optimal bounds for the first and second Seiffert means in terms of geometric, arithmetic and contraharmonic means
    Chu, Yu-Ming
    Qian, Wei-Mao
    Wu, Li-Min
    Zhang, Xiao-Hui
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [35] Optimal bounds for the first and second Seiffert means in terms of geometric, arithmetic and contraharmonic means
    Yu-Ming Chu
    Wei-Mao Qian
    Li-Min Wu
    Xiao-Hui Zhang
    Journal of Inequalities and Applications, 2015
  • [36] Sharp Geometric Mean Bounds for Neuman Means
    Zhang, Yan
    Chu, Yu-Ming
    Jiang, Yun-Liang
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [37] OPTIMAL BOUNDS OF THE ARITHMETIC MEAN IN TERMS OF NEW SEIFFERT-LIKE MEANS
    Nowicka, Monika
    Witkowski, Alfred
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (01): : 383 - 392
  • [38] Optimal Lehmer Mean Bounds for the Geometric and Arithmetic Combinations of Arithmetic and Seiffert Means
    Chu, Y. -M.
    Wang, M. -K.
    Qiu, Y. -F.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2012, 2 (01): : 3 - 9
  • [39] Sharp bounds for Seiffert and Neuman-Sandor means in terms of generalized logarithmic means
    Chu, Yu-Ming
    Long, Bo-Yong
    Gong, Wei-Ming
    Song, Ying-Qing
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [40] Optimal one-parameter mean bounds for the convex combination of arithmetic and geometric means
    Xia, Weifeng
    Hou, Shouwei
    Wang, Gendi
    Chu, Yuming
    JOURNAL OF APPLIED ANALYSIS, 2012, 18 (02) : 197 - 207