Some Optimal Convex Combination Bounds for Arithmetic Mean

被引:0
|
作者
Gao Hongya [1 ]
Xue Ruihong [1 ]
机构
[1] Hebei Univ, Coll Math & Comp Sci, Baoding 071002, Peoples R China
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2014年 / 54卷 / 04期
关键词
Optimal convex combination bound; arithmetic mean; harmonic mean; geometric mean; the second Seiffert mean;
D O I
10.5666/KMJ.2014.54.4.521
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we derive some optimal convex combination bounds related to arithmetic mean. We find the greatest values alpha(1) and alpha(2) and the least values beta(1) and beta(2) such that the double inequalities T-alpha 1 (a, b) + (1 - alpha(1)) H (a, b) < A(a, b) < beta T-1 (a, b) (1 - beta(1))H(a, b) and T-alpha 2 (a, b) + (1 -alpha(2))G(a, b) < A(a, b) < beta T-2(a, b) + (1 - beta 2)G(a, b) holds for all a, b > 0 with a not equal b. Here T (a, b), H (a, b), A(a,b) and G(a,b) denote the second Seiffert, harmonic, arithmetic and geometric means of two positive numbers a and b, respectively.
引用
收藏
页码:521 / 529
页数:9
相关论文
共 50 条
  • [41] ARITHMETIC MEAN OF VALUES AND VALUE AT MEAN OF ARGUMENTS FOR CONVEX FUNCTIONS
    Mortici, Cristinel
    ANZIAM JOURNAL, 2008, 50 (01): : 137 - 141
  • [42] Sharp bounds for the arithmetic-geometric mean
    Zhen-Hang Yang
    Ying-Qing Song
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2014
  • [43] Sharp bounds for the arithmetic-geometric mean
    Yang, Zhen-Hang
    Song, Ying-Qing
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [44] A REMARK ON ARITHMETIC MEAN OF CONVEX UNIVALENT FUNCTIONS
    LABELLE, G
    RAHMAN, QI
    CANADIAN JOURNAL OF MATHEMATICS, 1969, 21 (04): : 977 - &
  • [45] CONVEXITY OF THE INTEGRAL ARITHMETIC MEAN OF A CONVEX FUNCTION
    Zhang, X. M.
    Chu, Y. M.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (03) : 1061 - 1068
  • [46] THE OPTIMAL POWER MEAN BOUNDS FOR TWO CONVEX COMBINATIONS OF A-G-H MEANS
    Cizmesija, Aleksandra
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2012, 6 (01): : 33 - 41
  • [47] Optimal bounds for Seiffert-like elliptic integral mean by harmonic, geometric, and arithmetic means
    Zhang, Fan
    Qian, Weimao
    Xu, Hui Zuo
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [48] Optimal bounds for Seiffert-like elliptic integral mean by harmonic, geometric, and arithmetic means
    Fan Zhang
    Weimao Qian
    Hui Zuo Xu
    Journal of Inequalities and Applications, 2022
  • [49] NEW SHARP BOUNDS FOR IDENTRIC MEAN IN TERMS OF LOGARITHMIC MEAN AND ARITHMETIC MEAN
    Yang, Zhen-Hang
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2012, 6 (04): : 533 - 543
  • [50] Several Optimal Bounds for Some Means Derived From the Lemniscatic Mean
    Wang, Xueling
    Yin, Li
    JOURNAL OF MATHEMATICAL STUDY, 2022, 55 (02) : 195 - 205