Optimizing a Particular Real Root of a Polynomial by a Special Cylindrical Algebraic Decomposition

被引:1
|
作者
Gandy, Silvia [1 ]
Kanno, Masaaki [2 ]
Anai, Hirokazu [3 ]
Yokoyama, Kazuhiro [4 ]
机构
[1] Tokyo Inst Technol, Meguro Ku, Tokyo 1528550, Japan
[2] Niigata Univ, Nishi Ku, Niigata 9502181, Japan
[3] Kyushu Univ, Fujitsu Labs Ltd, Nakahara Ku, 4-1-1 Kamikodanaka, Kawasaki, Kanagawa 2118588, Japan
[4] Rikkyo Univ, Toshima Ku, Tokyo 1718501, Japan
关键词
Optimization of a real root; Maximal real root; Cylindrical algebraic decomposition CAD); Number-of-roots (NoR)-invariance;
D O I
10.1007/s11786-011-0090-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem of optimizing over parameters a particular real root of a polynomial with parametric coefficients. We propose an efficient symbolic method for solving the optimization problem based on a special cylindrical algebraic decomposition algorithm, which asks for a semi-algebraic decomposition into cells in terms of number-of-roots-invariance.
引用
收藏
页码:209 / 221
页数:13
相关论文
共 50 条
  • [21] Clustering in the Lazard method for Cylindrical Algebraic Decomposition
    del Rio, Tereso
    Sadeghimanesh, AmirHosein
    England, Matthew
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2023, 57 (03): : 126 - 129
  • [22] PARTIAL CYLINDRICAL ALGEBRAIC DECOMPOSITION FOR QUANTIFIER ELIMINATION
    COLLINS, GE
    HONG, H
    JOURNAL OF SYMBOLIC COMPUTATION, 1991, 12 (03) : 299 - 328
  • [23] Truth table invariant cylindrical algebraic decomposition
    Bradford, Russell
    Davenport, James H.
    England, Matthew
    McCallum, Scott
    Wilson, David
    JOURNAL OF SYMBOLIC COMPUTATION, 2016, 76 : 1 - 35
  • [24] Cylindrical Algebraic Decomposition using validated numerics
    Strzebonski, Adam W.
    JOURNAL OF SYMBOLIC COMPUTATION, 2006, 41 (09) : 1021 - 1038
  • [25] The Complexity of Quantifier Elimination and Cylindrical Algebraic Decomposition
    Brown, Christopher W.
    Davenport, James H.
    ISSAC 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2007, : 54 - 60
  • [26] Constructing a single cell in cylindrical algebraic decomposition
    Brown, Christopher W.
    Kosta, Marek
    JOURNAL OF SYMBOLIC COMPUTATION, 2015, 70 : 14 - 48
  • [27] COMPLEXITY OF THE COMPUTATION OF CYLINDRICAL DECOMPOSITION AND TOPOLOGY OF REAL ALGEBRAIC-CURVES USING THOMS LEMMA
    ROY, MF
    SZPIRGLAS, A
    LECTURE NOTES IN MATHEMATICS, 1990, 1420 : 223 - 236
  • [28] Interpolation on Real Algebraic Curves to Polynomial Data
    Bos, Len
    Lagu, Indy
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2013, 6 : 1 - 25
  • [29] Optimizing polynomial expressions by algebraic factorization and common subexpression elimination
    Hosangadi, Anup
    Fallah, Farzan
    Kastner, Ryan
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2006, 25 (10) : 2012 - 2022
  • [30] Using the distribution of cells by dimension in a cylindrical algebraic decomposition
    Wilson, David
    England, Matthew
    Bradford, Russell
    Davenport, James H.
    16TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2014), 2014, : 53 - 60