Optimizing a Particular Real Root of a Polynomial by a Special Cylindrical Algebraic Decomposition

被引:1
|
作者
Gandy, Silvia [1 ]
Kanno, Masaaki [2 ]
Anai, Hirokazu [3 ]
Yokoyama, Kazuhiro [4 ]
机构
[1] Tokyo Inst Technol, Meguro Ku, Tokyo 1528550, Japan
[2] Niigata Univ, Nishi Ku, Niigata 9502181, Japan
[3] Kyushu Univ, Fujitsu Labs Ltd, Nakahara Ku, 4-1-1 Kamikodanaka, Kawasaki, Kanagawa 2118588, Japan
[4] Rikkyo Univ, Toshima Ku, Tokyo 1718501, Japan
关键词
Optimization of a real root; Maximal real root; Cylindrical algebraic decomposition CAD); Number-of-roots (NoR)-invariance;
D O I
10.1007/s11786-011-0090-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem of optimizing over parameters a particular real root of a polynomial with parametric coefficients. We propose an efficient symbolic method for solving the optimization problem based on a special cylindrical algebraic decomposition algorithm, which asks for a semi-algebraic decomposition into cells in terms of number-of-roots-invariance.
引用
收藏
页码:209 / 221
页数:13
相关论文
共 50 条
  • [31] Computing the Cylindrical Algebraic Decomposition adapted to a set of equalities
    Gonzalez-Campos, N
    Gonzalez-Vega, L
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, 2000, : 203 - 217
  • [32] A CLUSTER-BASED CYLINDRICAL ALGEBRAIC DECOMPOSITION ALGORITHM
    ARNON, DS
    JOURNAL OF SYMBOLIC COMPUTATION, 1988, 5 (1-2) : 189 - 212
  • [33] A CLUSTER-BASED CYLINDRICAL ALGEBRAIC DECOMPOSITION ALGORITHM
    ARNON, DS
    LECTURE NOTES IN COMPUTER SCIENCE, 1985, 204 : 262 - 269
  • [34] Implementing the cylindrical algebraic decomposition within the Coq system
    Mahboubi, Assia
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2007, 17 (01) : 99 - 127
  • [35] Using Machine Learning to Improve Cylindrical Algebraic Decomposition
    Zongyan Huang
    Matthew England
    David J. Wilson
    James Bridge
    James H. Davenport
    Lawrence C. Paulson
    Mathematics in Computer Science, 2019, 13 : 461 - 488
  • [36] Using Machine Learning to Improve Cylindrical Algebraic Decomposition
    Huang, Zongyan
    England, Matthew
    Wilson, David J.
    Bridge, James
    Davenport, James H.
    Paulson, Lawrence C.
    MATHEMATICS IN COMPUTER SCIENCE, 2019, 13 (04) : 461 - 488
  • [37] Nonlinear parametric optimization using cylindrical algebraic decomposition
    Fotiou, Ioannis A.
    Parrilo, Pablo A.
    Morari, Manfred
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 3735 - 3740
  • [38] Improving the Use of Equational Constraints in Cylindrical Algebraic Decomposition
    England, Matthew
    Bradford, Russell
    Davenport, James H.
    PROCEEDINGS OF THE 2015 ACM ON INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC'15), 2015, : 165 - 172
  • [39] CYLINDRICAL ALGEBRAIC DECOMPOSITION .1. THE BASIC ALGORITHM
    ARNON, DS
    COLLINS, GE
    MCCALLUM, S
    SIAM JOURNAL ON COMPUTING, 1984, 13 (04) : 865 - 877
  • [40] COVARIANCE OF THE NUMBER OF REAL ZEROS OF A RANDOM ALGEBRAIC POLYNOMIAL
    Farahmand, K.
    Mcguinness, B.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2010, 16 (01) : 17 - 24