Optimizing a Particular Real Root of a Polynomial by a Special Cylindrical Algebraic Decomposition

被引:1
|
作者
Gandy, Silvia [1 ]
Kanno, Masaaki [2 ]
Anai, Hirokazu [3 ]
Yokoyama, Kazuhiro [4 ]
机构
[1] Tokyo Inst Technol, Meguro Ku, Tokyo 1528550, Japan
[2] Niigata Univ, Nishi Ku, Niigata 9502181, Japan
[3] Kyushu Univ, Fujitsu Labs Ltd, Nakahara Ku, 4-1-1 Kamikodanaka, Kawasaki, Kanagawa 2118588, Japan
[4] Rikkyo Univ, Toshima Ku, Tokyo 1718501, Japan
关键词
Optimization of a real root; Maximal real root; Cylindrical algebraic decomposition CAD); Number-of-roots (NoR)-invariance;
D O I
10.1007/s11786-011-0090-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem of optimizing over parameters a particular real root of a polynomial with parametric coefficients. We propose an efficient symbolic method for solving the optimization problem based on a special cylindrical algebraic decomposition algorithm, which asks for a semi-algebraic decomposition into cells in terms of number-of-roots-invariance.
引用
收藏
页码:209 / 221
页数:13
相关论文
共 50 条
  • [1] The Complexity of Cylindrical Algebraic Decomposition with Respect to Polynomial Degree
    England, Matthew
    Davenport, James H.
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2016, 2016, 9890 : 172 - 192
  • [2] SOLVING POLYNOMIAL STRICT INEQUALITIES USING CYLINDRICAL ALGEBRAIC DECOMPOSITION
    MCCALLUM, S
    COMPUTER JOURNAL, 1993, 36 (05): : 432 - 438
  • [3] Recent Developments in Real Quantifier Elimination and Cylindrical Algebraic Decomposition
    England, Matthew
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2024, 2024, 14938 : 1 - 10
  • [4] From approximate factorization to root isolation with application to cylindrical algebraic decomposition
    Mehlhorn, Kurt
    Sagraloff, Michael
    Wang, Pengming
    JOURNAL OF SYMBOLIC COMPUTATION, 2015, 66 : 34 - 69
  • [5] FACTORIZATION IN CYLINDRICAL ALGEBRAIC DECOMPOSITION
    COLLINS, GE
    LECTURE NOTES IN COMPUTER SCIENCE, 1982, 144 : 212 - 214
  • [6] Regular cylindrical algebraic decomposition
    Davenport, J. H.
    Locatelli, A. F.
    Sankaran, G. K.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 101 (01): : 43 - 59
  • [7] Development of SyNRAC - Real quantifier elimination based on cylindrical algebraic decomposition and visialization
    Yanami, Hitoshi
    Anai, Hirokazu
    COMPUTATIONAL SCIENCE - ICCS 2006, PT 2, PROCEEDINGS, 2006, 3992 : 462 - 469
  • [8] Optimal control of piece-wise polynomial hybrid systems using cylindrical algebraic decomposition
    Fotiou, Ioannis A.
    Beccuti, A. Giovanni
    Papafotiou, Georgios
    Morari, Manfred
    HYBRID SYSTEMS: COMPUTATION AND CONTROL, PROCEEDINGS, 2006, 3927 : 227 - 241
  • [9] CYLINDRICAL ALGEBRAIC DECOMPOSITION BY QUANTIFIER ELIMINATION
    ARNON, DS
    MCCALLUM, S
    LECTURE NOTES IN COMPUTER SCIENCE, 1982, 144 : 215 - 222
  • [10] Cylindrical algebraic decomposition with equational constraints
    England, Matthew
    Bradford, Russell
    Davenport, James H.
    JOURNAL OF SYMBOLIC COMPUTATION, 2020, 100 : 38 - 71