Regular cylindrical algebraic decomposition

被引:1
|
作者
Davenport, J. H. [1 ]
Locatelli, A. F. [1 ]
Sankaran, G. K. [1 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
14P10 (primary); 57N99; 68W30 (secondary);
D O I
10.1112/jlms.12257
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a strong well-based cylindrical algebraic decomposition P of a bounded semi-algebraic set S is a regular cell decomposition, in any dimension and independently of the method by which P is constructed. Being well-based is a global condition on P that holds for the output of many widely used algorithms. We also show the same for S of dimension at most 3 and P a strong cylindrical algebraic decomposition that is locally boundary simply connected: this is a purely local extra condition.
引用
收藏
页码:43 / 59
页数:17
相关论文
共 50 条
  • [1] Quantifier elimination by cylindrical algebraic decomposition based on regular chains
    Chen, Changbo
    Maza, Marc Moreno
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2016, 75 : 74 - 93
  • [2] Truth Table Invariant Cylindrical Algebraic Decomposition by Regular Chains
    Bradford, Russell
    Chen, Changbo
    Davenport, James H.
    England, Matthew
    Maza, Marc Moreno
    Wilson, David
    [J]. COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2014, 2014, 8660 : 44 - 58
  • [3] ALGEBRAIC DECOMPOSITION OF REGULAR CURVES
    ARNBORG, S
    FENG, H
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1988, 5 (1-2) : 131 - 140
  • [4] FACTORIZATION IN CYLINDRICAL ALGEBRAIC DECOMPOSITION
    COLLINS, GE
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1982, 144 : 212 - 214
  • [5] Cylindrical algebraic decomposition with equational constraints
    England, Matthew
    Bradford, Russell
    Davenport, James H.
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2020, 100 : 38 - 71
  • [6] CYLINDRICAL ALGEBRAIC DECOMPOSITION BY QUANTIFIER ELIMINATION
    ARNON, DS
    MCCALLUM, S
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1982, 144 : 215 - 222
  • [7] Improved projection for cylindrical algebraic decomposition
    Brown, CW
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2001, 32 (05) : 447 - 465
  • [8] Interval arithmetic in cylindrical algebraic decomposition
    Collins, GE
    Johnson, JR
    Krandick, W
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2002, 34 (02) : 145 - 157
  • [9] Fully incremental cylindrical algebraic decomposition
    Kremer, Gereon
    Abraham, Erika
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2020, 100 : 11 - 37
  • [10] Computing Cylindrical Algebraic Decomposition via Triangular Decomposition
    Chen, Changbo
    Maza, Marc Moreno
    Xia, Bican
    Yang, Lu
    [J]. ISSAC2009: PROCEEDINGS OF THE 2009 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2009, : 95 - 102