Approximation algorithms for solving the line-capacitated minimum Steiner tree problem

被引:0
|
作者
Jianping Li
Wencheng Wang
Junran Lichen
Suding Liu
Pengxiang Pan
机构
[1] Yunnan University,Department of Mathematics
[2] Chinese Academy of Sciences,Institute of Applied Mathematics, Academy of Mathematics and Systems Science
[3] School of Mathematics and Physics,undefined
[4] Beijing University of Chemical Technology,undefined
来源
关键词
Combinatorial optimization; Locations of lines; Line-capacitated Steiner trees; Approximation algorithms; Exact algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we address the line-capacitated minimum Steiner tree problem (the Lc-MStT problem, for short), which is a variant of the (Euclidean) capacitated minimum Steiner tree problem and defined as follows. Given a set X={r1,r2,…,rn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X=\{r_{1},r_{2},\ldots , r_{n}\}$$\end{document} of n terminals in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^2$$\end{document}, a demand function d:X→N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d:X \rightarrow {\mathbb {N}}$$\end{document} and a positive integer C, we are asked to determine the location of a line l and a Steiner tree Tl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_l$$\end{document} to interconnect these n terminals in X and at least one point located on this line l such that the total demand of terminals in each maximal subtree (of Tl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_l$$\end{document}) connected to the line l, where the terminals in such maximal subtree are all located at the same side of this line l, does not exceed the bound C. The objective is to minimize total weight ∑e∈Tlw(e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{e\in T_l}w(e)$$\end{document} of such a Steiner tree Tl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_l$$\end{document} among all line-capacitated Steiner trees mentioned-above, where weight w(e)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(e)=0$$\end{document} if two endpoints of that edge e∈Tl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e\in T_l$$\end{document} are located on the line l and otherwise weight w(e) is the Euclidean distance between two endpoints of that edge e∈Tl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e\in T_l$$\end{document}. In addition, when this line l is as an input in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^2$$\end{document} and ∑r∈Xd(r)≤C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{r\in X} d(r) \le C$$\end{document} holds, we refer to this version as the 1-line-fixed minimum Steiner tree problem (the 1Lf-MStT problem, for short). We obtain three main results. (1) Given a ρst\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{st}$$\end{document}-approximation algorithm to solve the Euclidean minimum Steiner tree problem and a ρ1Lf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{1Lf}$$\end{document}-approximation algorithm to solve the 1Lf-MStT problem, respectively, we design a (ρstρ1Lf+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\rho _{st}\rho _{1Lf}+2)$$\end{document}-approximation algorithm to solve the Lc-MStT problem. (2) Whenever demand of each terminal r∈X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\in X$$\end{document} is less than C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{C}{2}$$\end{document}, we provide a (ρ1Lf+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\rho _{1Lf}+2)$$\end{document}-approximation algorithm to resolve the Lc-MStT problem. (3) Whenever demand of each terminal r∈X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\in X$$\end{document} is at least C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{C}{2}$$\end{document}, using the Edmonds’ algorithm to solve the minimum weight perfect matching as a subroutine, we present an exact algorithm in polynomial time to resolve the Lc-MStT problem.
引用
收藏
页码:687 / 714
页数:27
相关论文
共 50 条
  • [31] A memory adaptive reasoning technique for solving the Capacitated Minimum Spanning Tree problem
    Patterson, R
    Pirkul, H
    Rolland, E
    JOURNAL OF HEURISTICS, 1999, 5 (02) : 159 - 180
  • [32] Approximation Algorithms for the Capacitated Domination Problem
    Kao, Mong-Jen
    Chen, Han-Lin
    FRONTIERS IN ALGORITHMICS, 2010, 6213 : 185 - 196
  • [33] A Polynomial Time Approximation Scheme for the Grade of Service Steiner Minimum Tree Problem
    Joonmo Kim
    Mihaela Cardei
    Ionut Cardei
    Xiaohua Jia
    Journal of Global Optimization, 2002, 24 : 437 - 448
  • [34] A polynomial time approximation scheme for the Grade of Service Steiner Minimum Tree problem
    Kim, J
    Cardei, M
    Cardei, I
    Jia, XH
    JOURNAL OF GLOBAL OPTIMIZATION, 2002, 24 (04) : 437 - 448
  • [35] Fuzzy Shortest Paths Approximation for Solving the Fuzzy Steiner Tree Problem in Graphs
    Seda, Milos
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 14, 2006, 14 : 22 - 26
  • [36] HEURISTICS FOR THE MINIMUM RECTILINEAR STEINER TREE PROBLEM - NEW ALGORITHMS AND A COMPUTATIONAL STUDY
    DESOUZA, CC
    RIBEIRO, CC
    DISCRETE APPLIED MATHEMATICS, 1993, 45 (03) : 205 - 220
  • [37] Approximation algorithms for the covering Steiner problem
    Konjevod, G
    Ravi, R
    Srinivasan, A
    RANDOM STRUCTURES & ALGORITHMS, 2002, 20 (03) : 465 - 482
  • [38] ON APPROXIMATION ALGORITHMS FOR STEINER PROBLEM IN GRAPHS
    WIDMAYER, P
    LECTURE NOTES IN COMPUTER SCIENCE, 1987, 246 : 17 - 28
  • [39] Parallel Algorithms for Steiner Tree Problem
    Park, Joon-Sang
    Ro, Won W.
    Lee, Handuck
    Park, Neungsoo
    THIRD 2008 INTERNATIONAL CONFERENCE ON CONVERGENCE AND HYBRID INFORMATION TECHNOLOGY, VOL 1, PROCEEDINGS, 2008, : 453 - +
  • [40] New approximation algorithms for the Steiner tree problems
    Karpinski, M
    Zelikovsky, A
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 1997, 1 (01) : 47 - 65