HEURISTICS FOR THE MINIMUM RECTILINEAR STEINER TREE PROBLEM - NEW ALGORITHMS AND A COMPUTATIONAL STUDY

被引:1
|
作者
DESOUZA, CC [1 ]
RIBEIRO, CC [1 ]
机构
[1] CATHOLIC UNIV RIO DE JANEIRO,DEPT ELECT ENGN,CAIXA POSTAL 38063,BR-22452 GAVEA,RJ,BRAZIL
关键词
MINIMUM RECTILINEAR STEINER TREE PROBLEM; STEINER TREES; STEINER PROBLEM; HEURISTICS;
D O I
10.1016/0166-218X(93)90010-L
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose in this paper new approximate algorithms for the minimum rectilinear Steiner tree problem, based on a two-point-connection strategy. We also present extensive computational experiments involving the new algorithms and several existing heuristics, more consistent than the other experiments reported in the literature. We conclude from these experiments that one of these new heuristics obtains slightly better solutions in the average when compared with the previously known heuristics.
引用
下载
收藏
页码:205 / 220
页数:16
相关论文
共 50 条
  • [1] NEW ALGORITHMS FOR THE RECTILINEAR STEINER TREE PROBLEM
    HO, JM
    VIJAYAN, G
    WONG, CK
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1990, 9 (02) : 185 - 193
  • [2] Rectilinear Steiner tree heuristics and minimum spanning tree algorithms using geographic nearest neighbors
    Wee, Y.C.
    Chaiken, S.
    Ravi, S.S.
    Algorithmica (New York), 1994, 12 (06): : 421 - 435
  • [3] RECTILINEAR STEINER TREE HEURISTICS AND MINIMUM SPANNING TREE ALGORITHMS USING GEOGRAPHIC NEAREST NEIGHBORS
    WEE, YC
    CHAIKEN, S
    RAVI, SS
    ALGORITHMICA, 1994, 12 (06) : 421 - 435
  • [4] A TIGHT WORST CASE BOUND FOR THE PERFORMANCE RATIO OF HEURISTICS FOR THE MINIMUM RECTILINEAR STEINER TREE PROBLEM
    DESOUZA, CC
    RIBEIRO, CC
    OR SPEKTRUM, 1990, 12 (02) : 109 - 111
  • [5] Faster approximation algorithms for the rectilinear Steiner tree problem
    Fossmeier, U
    Kaufmann, M
    Zelikovsky, A
    DISCRETE & COMPUTATIONAL GEOMETRY, 1997, 18 (01) : 93 - 109
  • [6] Faster Approximation Algorithms for the Rectilinear Steiner Tree Problem
    U. Fößmeier
    M. Kaufmann
    A. Zelikovsky
    Discrete & Computational Geometry, 1997, 18 : 93 - 109
  • [7] Approximation algorithms for the rectilinear Steiner tree problem with obstacles
    Fujimoto, M
    Takafuji, D
    Watanabe, T
    2005 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), VOLS 1-6, CONFERENCE PROCEEDINGS, 2005, : 1362 - 1365
  • [8] A NEW APPROACH TO THE RECTILINEAR STEINER TREE PROBLEM
    HO, JM
    VIJAYAN, G
    WONG, CK
    26TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, 1989, : 161 - 166
  • [9] Fast optimal algorithms for the minimum rectilinear Steiner arborescence problem
    Leung, KS
    Cong, J
    ISCAS '97 - PROCEEDINGS OF 1997 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I - IV: CIRCUITS AND SYSTEMS IN THE INFORMATION AGE, 1997, : 1568 - 1571
  • [10] Algorithms for the minimum diameter terminal Steiner tree problem
    Wei Ding
    Ke Qiu
    Journal of Combinatorial Optimization, 2014, 28 : 837 - 853