Approximation algorithms for solving the line-capacitated minimum Steiner tree problem

被引:0
|
作者
Jianping Li
Wencheng Wang
Junran Lichen
Suding Liu
Pengxiang Pan
机构
[1] Yunnan University,Department of Mathematics
[2] Chinese Academy of Sciences,Institute of Applied Mathematics, Academy of Mathematics and Systems Science
[3] School of Mathematics and Physics,undefined
[4] Beijing University of Chemical Technology,undefined
来源
关键词
Combinatorial optimization; Locations of lines; Line-capacitated Steiner trees; Approximation algorithms; Exact algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we address the line-capacitated minimum Steiner tree problem (the Lc-MStT problem, for short), which is a variant of the (Euclidean) capacitated minimum Steiner tree problem and defined as follows. Given a set X={r1,r2,…,rn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X=\{r_{1},r_{2},\ldots , r_{n}\}$$\end{document} of n terminals in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^2$$\end{document}, a demand function d:X→N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d:X \rightarrow {\mathbb {N}}$$\end{document} and a positive integer C, we are asked to determine the location of a line l and a Steiner tree Tl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_l$$\end{document} to interconnect these n terminals in X and at least one point located on this line l such that the total demand of terminals in each maximal subtree (of Tl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_l$$\end{document}) connected to the line l, where the terminals in such maximal subtree are all located at the same side of this line l, does not exceed the bound C. The objective is to minimize total weight ∑e∈Tlw(e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{e\in T_l}w(e)$$\end{document} of such a Steiner tree Tl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_l$$\end{document} among all line-capacitated Steiner trees mentioned-above, where weight w(e)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(e)=0$$\end{document} if two endpoints of that edge e∈Tl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e\in T_l$$\end{document} are located on the line l and otherwise weight w(e) is the Euclidean distance between two endpoints of that edge e∈Tl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e\in T_l$$\end{document}. In addition, when this line l is as an input in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^2$$\end{document} and ∑r∈Xd(r)≤C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{r\in X} d(r) \le C$$\end{document} holds, we refer to this version as the 1-line-fixed minimum Steiner tree problem (the 1Lf-MStT problem, for short). We obtain three main results. (1) Given a ρst\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{st}$$\end{document}-approximation algorithm to solve the Euclidean minimum Steiner tree problem and a ρ1Lf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{1Lf}$$\end{document}-approximation algorithm to solve the 1Lf-MStT problem, respectively, we design a (ρstρ1Lf+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\rho _{st}\rho _{1Lf}+2)$$\end{document}-approximation algorithm to solve the Lc-MStT problem. (2) Whenever demand of each terminal r∈X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\in X$$\end{document} is less than C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{C}{2}$$\end{document}, we provide a (ρ1Lf+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\rho _{1Lf}+2)$$\end{document}-approximation algorithm to resolve the Lc-MStT problem. (3) Whenever demand of each terminal r∈X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\in X$$\end{document} is at least C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{C}{2}$$\end{document}, using the Edmonds’ algorithm to solve the minimum weight perfect matching as a subroutine, we present an exact algorithm in polynomial time to resolve the Lc-MStT problem.
引用
收藏
页码:687 / 714
页数:27
相关论文
共 50 条
  • [41] New Approximation Algorithms for the Steiner Tree Problems
    Marek Karpinski
    Alexander Zelikovsky
    Journal of Combinatorial Optimization, 1997, 1 : 47 - 65
  • [42] Approximation Algorithms for Priority Steiner Tree Problems
    Sahneh, Faryad Darabi
    Kobourov, Stephen
    Spence, Richard
    COMPUTING AND COMBINATORICS (COCOON 2021), 2021, 13025 : 112 - 123
  • [43] RAMP for the capacitated minimum spanning tree problem
    Rego, Cesar
    Mathew, Frank
    Glover, Fred
    ANNALS OF OPERATIONS RESEARCH, 2010, 181 (01) : 661 - 681
  • [44] RAMP for the capacitated minimum spanning tree problem
    Cesar Rego
    Frank Mathew
    Fred Glover
    Annals of Operations Research, 2010, 181 : 661 - 681
  • [45] The multilevel capacitated minimum spanning tree problem
    Gamvros, Ioannis
    Golden, Bruce
    Raghavan, S.
    INFORMS JOURNAL ON COMPUTING, 2006, 18 (03) : 348 - 365
  • [46] Solving Minimum Steiner tree based on behavior of ants
    Maharjan, Narendra
    Shrestha, Abinash
    Tamrakar, Ashish
    Panday, Sanjeeb Prasad
    2012 Third IEEE and IFIP South Central Asian Himalayas Regional International Conference on Internet (AH-ICI 2012), 2012,
  • [47] Quantum Speedup for the Minimum Steiner Tree Problem
    Miyamoto, Masayuki
    Iwamura, Masakazu
    Kise, Koichi
    Le Gall, Francois
    COMPUTING AND COMBINATORICS (COCOON 2020), 2020, 12273 : 234 - 245
  • [48] Capacitated Domination: Problem Complexity and Approximation Algorithms
    Kao, Mong-Jen
    Chen, Han-Lin
    Lee, D. T.
    ALGORITHMICA, 2015, 72 (01) : 1 - 43
  • [49] Approximation Algorithms for a Capacitated Network Design Problem
    Refael Hassin
    R. Ravi
    F. Sibel Salman
    Algorithmica , 2004, 38 : 417 - 431
  • [50] Approximation algorithms for a capacitated network design problem
    Hassin, R
    Ravi, R
    Salman, FS
    ALGORITHMICA, 2004, 38 (03) : 417 - 431