A Partitioned Version of the Erdös–Szekeres Theorem for Quadrilaterals

被引:0
|
作者
Attila Póor
机构
[1] Rényi Institute of Mathematics,
[2] Hungarian Academy of Sciences,undefined
[3] PO Box 127,undefined
[4] 1364 Budapest,undefined
来源
关键词
Type Lemma; Szekeres Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a partitioned version of the Erdös–Szekeres theorem for the case $k = 4$: any finite set $X \subset \bbbr^2$ of points in general position can be partitioned into sets $X_0, X_{ij}$ where $i=1,2,3,4$ and $j=1,\ldots,26$, so that $|X_{1j}|=|X_{2j}|=|X_{3j}|=|X_{4j}|$, $|X_0|\leq 4$ and for all $j$ every transversal $\{x_1,x_2,x_3,x_4\}$, $x_1 \in X_{1j}, x_2 \in X_{2j},x_3 \in X_{3j}, x_4 \in X_{4j}$, is in convex position. In order to prove this, we show another theorem, the partitioned version of the “same type lemma”, which was proved by Bárány and Valtr.
引用
收藏
页码:321 / 336
页数:15
相关论文
共 50 条
  • [1] The Partitioned Version of the Erdős—Szekeres Theorem
    Discrete & Computational Geometry, 2002, 28 : 625 - 637
  • [2] A partitioned version of the Erdos-Szekeres theorem for quadrilaterals
    Pór, A
    DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 30 (02) : 321 - 336
  • [3] The partitioned version of the Erdos-Szekeres theorem
    Pór, A
    Valtr, P
    DISCRETE & COMPUTATIONAL GEOMETRY, 2002, 28 (04) : 625 - 637
  • [4] Erdős–Szekeres Theorem for Lines
    Imre Bárány
    Edgardo Roldán-Pensado
    Géza Tóth
    Discrete & Computational Geometry, 2015, 54 : 669 - 685
  • [5] The Erdős-Szekeres theorem and congruences
    V. A. Koshelev
    Mathematical Notes, 2010, 87 : 537 - 542
  • [6] A Postscript on Erds-Szekeres Theorem
    张玉琴
    苑立平
    NortheasternMathematicalJournal, 2002, (04) : 319 - 322
  • [7] Exponential Erdős-Szekeres theorem for matrices
    Ciceksiz, Recep Altar
    Jin, Zhihan
    Raty, Eero
    Tomon, Istvan
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2024, 129 (03)
  • [8] Erdős–Szekeres Theorem for k-Flats
    Imre Bárány
    Gil Kalai
    Attila Pór
    Discrete & Computational Geometry, 2023, 69 : 1232 - 1240
  • [9] Erdős–Szekeres Theorem for Point Sets with Forbidden Subconfigurations
    Gyula Károlyi
    Géza Tóth
    Discrete & Computational Geometry, 2012, 48 : 441 - 452
  • [10] A Positive Fraction Erdős–Szekeres Theorem and Its Applications
    Andrew Suk
    Ji Zeng
    Discrete & Computational Geometry, 2024, 71 (1) : 308 - 325