A Space–Time Integral Estimate For A Large Data Semi-linear Wave Equation on the Schwarzschild Manifold

被引:0
|
作者
Pieter Blue
Avy Soffer
机构
[1] University of Toronto,Department of Mathematics
[2] The State University of New Jersey,Department of Mathematics, Hill Center
来源
关键词
35P25; 58-xx; Schwarzschild manifold; local decay estimates.;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the wave equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\partial_t^{2} + \partial_\rho^{2} - V - V_L(-\Delta_{S^2}))u = f F'(|u|^2)u$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(t, \rho, \theta, \phi)$$\end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R \times \mathbb R \times S^2$$\end{document} . The wave equation on a spherically symmetric manifold with a single closed geodesic surface or on the exterior of the Schwarzschild manifold can be reduced to this form. Using a smoothed Morawetz estimate which does not require a spherical harmonic decomposition, we show that there is decay in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2_{\rm {loc}}$$\end{document} for initial data in the energy class, even if the initial data is large. This requires certain conditions on the potentials V, VL and f. We show that a key condition on the weight in the smoothed Morawetz estimate can be reduced to an ODE condition, which is verified numerically.
引用
收藏
页码:227 / 238
页数:11
相关论文
共 50 条