Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space

被引:91
|
作者
Blue, Pieter
Sterbenz, Jacob
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[3] MSRI, Berkeley, CA USA
[4] Princeton Univ, Princeton, NJ 08544 USA
关键词
Black Hole; Wave Equation; Scalar Field; Minkowski Space; Decay Estimate;
D O I
10.1007/s00220-006-0101-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide a uniform decay estimate for the local energy of general solutions to the inhomogeneous wave equation on a Schwarzschild background. Our estimate implies that such solutions have asymptotic behavior |phi| = O(r(-1)\t - | r *|\(-1/2)) as long as the source term is bounded in the norm (1- 2M/r)(-1).(1+ t +| r *|)L--1(1)(H-Omega(3)(r(2)dr* d omega)). In particular this gives scattering at small amplitudes for non-linear scalar fields of the form square(g)phi =lambda|phi|(p)phi for all 2 < p.
引用
收藏
页码:481 / 504
页数:24
相关论文
共 50 条