A Space–Time Integral Estimate For A Large Data Semi-linear Wave Equation on the Schwarzschild Manifold

被引:0
|
作者
Pieter Blue
Avy Soffer
机构
[1] University of Toronto,Department of Mathematics
[2] The State University of New Jersey,Department of Mathematics, Hill Center
来源
关键词
35P25; 58-xx; Schwarzschild manifold; local decay estimates.;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the wave equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\partial_t^{2} + \partial_\rho^{2} - V - V_L(-\Delta_{S^2}))u = f F'(|u|^2)u$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(t, \rho, \theta, \phi)$$\end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R \times \mathbb R \times S^2$$\end{document} . The wave equation on a spherically symmetric manifold with a single closed geodesic surface or on the exterior of the Schwarzschild manifold can be reduced to this form. Using a smoothed Morawetz estimate which does not require a spherical harmonic decomposition, we show that there is decay in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2_{\rm {loc}}$$\end{document} for initial data in the energy class, even if the initial data is large. This requires certain conditions on the potentials V, VL and f. We show that a key condition on the weight in the smoothed Morawetz estimate can be reduced to an ODE condition, which is verified numerically.
引用
收藏
页码:227 / 238
页数:11
相关论文
共 50 条
  • [41] Symmetry results in the half-space for a semi-linear fractional Laplace equation
    Barrios, B.
    Del Pezzo, L.
    Garcia-Melian, J.
    Quaas, A.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (05) : 1385 - 1416
  • [42] BLOW-UP RATE FOR THE SEMI-LINEAR WAVE EQUATION IN BOUNDED DOMAIN
    Liang, Chuangchuang
    Wang, Pengchao
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (01) : 173 - 182
  • [43] Quenching for a semi-linear wave equation for micro-electro-mechanical systems
    Gimperlein, Heiko
    He, Runan
    Lacey, Andrew A. A.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2267):
  • [44] Critical exponent for semi-linear structurally damped wave equation of derivative type
    Tuan Anh Dao
    Fino, Ahmad Z.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (17) : 9766 - 9775
  • [45] ENERGY-CRITICAL SEMI-LINEAR SHIFTED WAVE EQUATION ON THE HYPERBOLIC SPACES
    Shen, Ruipeng
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2016, 29 (7-8) : 731 - 756
  • [46] Inertial manifold for semi-linear non-instantaneous impulsive parabolic equations in an admissible space
    Yang, Peng
    Wang, JinRong
    O'Regan, D.
    Feckan, Michal
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 75 : 174 - 191
  • [47] ESTIMATE OF THE HAUSDORFF MEASURE OF THE SINGULAR SET OF A SOLUTION FOR A SEMI-LINEAR ELLIPTIC EQUATION ASSOCIATED WITH SUPERCONDUCTIVITY
    Aramaki, Junichi
    ARCHIVUM MATHEMATICUM, 2010, 46 (03): : 185 - 201
  • [48] ANALYSIS AND DISCRETIZATION OF SEMI-LINEAR STOCHASTIC WAVE EQUATIONS WITH CUBIC NONLINEARITY AND ADDITIVE SPACE-TIME NOISE
    Schurz, Henri
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2008, 1 (02): : 353 - 363
  • [49] Optimal bounds and blow-up criteria for a semi-linear accretive wave equation
    Jazar, M.
    Messikh, Ch
    NONLINEARITY, 2007, 20 (11) : 2633 - 2659
  • [50] Uniform Stabilization for the Semi-linear Wave Equation with Nonlinear Kelvin-Voigt Damping
    Ammari, Kais
    Cavalcanti, Marcelo M.
    Mansouri, Sabeur
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 90 (02):