QModeling: a Multiplatform, Easy-to-Use and Open-Source Toolbox for PET Kinetic Analysis

被引:0
|
作者
Francisco J. López-González
José Paredes-Pacheco
Karl Thurnhofer-Hemsi
Carlos Rossi
Manuel Enciso
Daniel Toro-Flores
Belén Murcia-Casas
Antonio L. Gutiérrez-Cardo
Núria Roé-Vellvé
机构
[1] Molecular Imaging Unit,Molecular Imaging and Medical Physics Group, Department of Psychiatry, Radiology and Public Health
[2] Centro de Investigaciones Médico-Sanitarias,Department of Computer Languages and Computer Science
[3] Fundación General de la Universidad de Málaga,Internal Medicine
[4] Universidade de Compostela,Nuclear Medicine
[5] Universidad de Málaga,undefined
[6] Hospital Virgen de la Victoria,undefined
[7] Hospital Regional Universitario,undefined
来源
Neuroinformatics | 2019年 / 17卷
关键词
Kinetic analysis; PET; Parametric images; SRTM; Patlak; QModeling;
D O I
暂无
中图分类号
学科分类号
摘要
Kinetic modeling is at the basis of most quantification methods for dynamic PET data. Specific software is required for it, and a free and easy-to-use kinetic analysis toolbox can facilitate routine work for clinical research. The relevance of kinetic modeling for neuroimaging encourages its incorporation into image processing pipelines like those of SPM, also providing preprocessing flexibility to match the needs of users. The aim of this work was to develop such a toolbox: QModeling. It implements four widely-used reference-region models: Simplified Reference Tissue Model (SRTM), Simplified Reference Tissue Model 2 (SRTM2), Patlak Reference and Logan Reference. A preliminary validation was also performed: The obtained parameters were compared with the gold standard provided by PMOD, the most commonly-used software in this field. Execution speed was also compared, for time-activity curve (TAC) estimation, model fitting and image generation. QModeling has a simple interface, which guides the user through the analysis: Loading data, obtaining TACs, preprocessing the model for pre-evaluation, generating parametric images and visualizing them. Relative differences between QModeling and PMOD in the parameter values are almost always below 10−8. The SRTM2 algorithm yields relative differences from 10−3 to 10−5 when k2′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {k}_2^{\prime } $$\end{document} is not fixed, since different, validated methods are used to fit this parameter. The new toolbox works efficiently, with execution times of the same order as those of PMOD. Therefore, QModeling allows applying reference-region models with reliable results in efficient computation times. It is free, flexible, multiplatform, easy-to-use and open-source, and it can be easily expanded with new models.
引用
收藏
页码:103 / 114
页数:11
相关论文
共 50 条
  • [41] An Open-Source Toolbox for PEM Fuel Cell Simulation
    Kone, Jean-Paul
    Zhang, Xinyu
    Yan, Yuying
    Adegbite, Stephen
    COMPUTATION, 2018, 6 (02)
  • [42] SCOUT - Surface characterization open-source universal toolbox
    Sacerdotti, F
    Porrino, A
    Butler, C
    Brinkmann, S
    Vermeulen, M
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2002, 13 (02) : N21 - N26
  • [43] Open-source toolbox for photographic characterization of optical propagation
    Sorensen, Simon R.
    Ulsig, Emil Z.
    Philip, Frederik E.
    Sorensen, Frederik R. B.
    Madsen, Magnus L.
    Gardner, Asger B.
    Tonning, Peter
    Thomsen, Simon T.
    Gravesen, Kevin B.
    Stanton, Eric J.
    Volet, Nicolas
    OPTICS LETTERS, 2024, 49 (15) : 4098 - 4101
  • [44] OpenOrd: An Open-Source Toolbox for Large Graph Layout
    Martin, Shawn
    Brown, W. Michael
    Klavans, Richard
    Boyack, Kevin W.
    VISUALIZATION AND DATA ANALYSIS 2011, 2011, 7868
  • [45] Rigbox: An Open-Source Toolbox for Probing Neurons and Behavior
    Bhagat, Jai
    Wells, Miles J.
    Harris, Kenneth D.
    Carandini, Matteo
    Burgess, Christopher P.
    ENEURO, 2020, 7 (04) : 1 - 12
  • [46] NoLiTiA: An Open-Source Toolbox for Non-linear Time Series Analysis
    Weber, Immo
    Oehrn, Carina R.
    FRONTIERS IN NEUROINFORMATICS, 2022, 16
  • [47] The masked priming toolbox: an open-source MATLAB toolbox for masked priming researchers
    Wilson, Andrew D.
    Tresilian, James
    Schlaghecken, Friederike
    BEHAVIOR RESEARCH METHODS, 2011, 43 (01) : 210 - 214
  • [48] An open-source toolbox for Multi-patient Intracranial EEG Analysis (MIA) *
    Dubarry, A. -Sophie
    Liegeois-Chauvel, Catherine
    Trebuchon, Agnes
    Benar, Christian
    Alario, F. -Xavier
    NEUROIMAGE, 2022, 257
  • [49] IRootLab: a free and open-source MATLAB toolbox for vibrational biospectroscopy data analysis
    Trevisan, Julio
    Angelov, Plamen P.
    Scott, Andrew D.
    Carmichael, Paul L.
    Martin, Francis L.
    BIOINFORMATICS, 2013, 29 (08) : 1095 - 1097
  • [50] biomechZoo: An open-source toolbox for the processing, analysis, and visualization of biomechanical movement data
    Dixon, Philippe C.
    Loh, Jonathan J.
    Michaud-Paquette, Yannick
    Pearsall, David J.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 140 : 1 - 10