QModeling: a Multiplatform, Easy-to-Use and Open-Source Toolbox for PET Kinetic Analysis

被引:0
|
作者
Francisco J. López-González
José Paredes-Pacheco
Karl Thurnhofer-Hemsi
Carlos Rossi
Manuel Enciso
Daniel Toro-Flores
Belén Murcia-Casas
Antonio L. Gutiérrez-Cardo
Núria Roé-Vellvé
机构
[1] Molecular Imaging Unit,Molecular Imaging and Medical Physics Group, Department of Psychiatry, Radiology and Public Health
[2] Centro de Investigaciones Médico-Sanitarias,Department of Computer Languages and Computer Science
[3] Fundación General de la Universidad de Málaga,Internal Medicine
[4] Universidade de Compostela,Nuclear Medicine
[5] Universidad de Málaga,undefined
[6] Hospital Virgen de la Victoria,undefined
[7] Hospital Regional Universitario,undefined
来源
Neuroinformatics | 2019年 / 17卷
关键词
Kinetic analysis; PET; Parametric images; SRTM; Patlak; QModeling;
D O I
暂无
中图分类号
学科分类号
摘要
Kinetic modeling is at the basis of most quantification methods for dynamic PET data. Specific software is required for it, and a free and easy-to-use kinetic analysis toolbox can facilitate routine work for clinical research. The relevance of kinetic modeling for neuroimaging encourages its incorporation into image processing pipelines like those of SPM, also providing preprocessing flexibility to match the needs of users. The aim of this work was to develop such a toolbox: QModeling. It implements four widely-used reference-region models: Simplified Reference Tissue Model (SRTM), Simplified Reference Tissue Model 2 (SRTM2), Patlak Reference and Logan Reference. A preliminary validation was also performed: The obtained parameters were compared with the gold standard provided by PMOD, the most commonly-used software in this field. Execution speed was also compared, for time-activity curve (TAC) estimation, model fitting and image generation. QModeling has a simple interface, which guides the user through the analysis: Loading data, obtaining TACs, preprocessing the model for pre-evaluation, generating parametric images and visualizing them. Relative differences between QModeling and PMOD in the parameter values are almost always below 10−8. The SRTM2 algorithm yields relative differences from 10−3 to 10−5 when k2′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {k}_2^{\prime } $$\end{document} is not fixed, since different, validated methods are used to fit this parameter. The new toolbox works efficiently, with execution times of the same order as those of PMOD. Therefore, QModeling allows applying reference-region models with reliable results in efficient computation times. It is free, flexible, multiplatform, easy-to-use and open-source, and it can be easily expanded with new models.
引用
收藏
页码:103 / 114
页数:11
相关论文
共 50 条
  • [21] Pteros: Fast and easy to use open-source C++ library for molecular analysis
    Yesylevskyy, Semen O.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2012, 33 (19) : 1632 - 1636
  • [22] CircuitQ: an open-source toolbox for superconducting circuits
    Aumann, Philipp
    Menke, Tim
    Oliver, William D.
    Lechner, Wolfgang
    NEW JOURNAL OF PHYSICS, 2022, 24 (09):
  • [23] An Easy-to-Use Protocol for Segmenting and 3-D Printing Craniofacial CT-Images Using Open-Source Software
    Pakvasa, Mikhail
    Prescher, Hannes
    Hendren-Santiago, Bryce
    Da Lomba, Tony
    McKenzie, Nicholas
    Orsbon, Courtney
    Collier, Zachary
    Ramirez-Garcia, Richard
    Gomez, Isabella
    Reid, Russell R.
    FACE, 2022, 3 (01): : 66 - 73
  • [24] Fingermark Quality Assessment: An Open-Source Toolbox
    Oblak, Tim
    Haraksim, Rudolf
    Beslay, Laurent
    Peer, Peter
    PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE OF THE BIOMETRICS SPECIAL INTEREST GROUP (BIOSIG 2021), 2021, 315
  • [25] Validation of kinfitr: An open-source tool for reproducible PET kinetic modelling
    Tjerkaski, Jonathan
    Cervenka, Simon
    Farde, Lars
    Matheson, Granville J.
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2021, 41 (1_SUPPL): : 258 - 260
  • [26] AN EXTENSIBLE AND EASY-TO-USE TOOLBOX FOR DEEP LEARNING BASED ANALYSIS OF REMOTE SENSING IMAGES
    Maretto, Raian Vargas
    Korting, Thales Sehn
    Garcia Fonseca, Leila Maria
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 9815 - 9818
  • [27] BrainQuake: An Open-Source Python']Python Toolbox for the Stereoelectroencephalography Spatiotemporal Analysis
    Cai, Fang
    Wang, Kang
    Zhao, Tong
    Wang, Haixiang
    Zhou, Wenjing
    Hong, Bo
    FRONTIERS IN NEUROINFORMATICS, 2022, 15
  • [28] OXSA: An open-source magnetic resonance spectroscopy analysis toolbox in MATLAB
    Purvis, Lucian A. B.
    Clarke, William T.
    Biasiolli, Luca
    Valkovic, Ladislav
    Robson, Matthew D.
    Rodgers, Christopher T.
    PLOS ONE, 2017, 12 (09):
  • [29] nSTAT: Open-source neural spike train analysis toolbox for Matlab
    Cajigas, I.
    Malik, W. Q.
    Brown, E. N.
    JOURNAL OF NEUROSCIENCE METHODS, 2012, 211 (02) : 245 - 264
  • [30] An Open-Source Toolbox for Motion Analysis of Closed-Chain Mechanisms
    Porta, Josep M.
    Ros, Lluis
    Bohigas, Oriol
    Manubens, Montserrat
    Rosales, Carlos
    Jaillet, Leonard
    COMPUTATIONAL KINEMATICS (CK2013), 2014, 15 : 147 - 154