Molecular generative model based on conditional variational autoencoder for de novo molecular design

被引:0
|
作者
Jaechang Lim
Seongok Ryu
Jin Woo Kim
Woo Youn Kim
机构
[1] KAIST,Department of Chemistry
[2] KAIST,KI for Artificial Intelligence
来源
关键词
Molecular design; Conditional variational autoencoder; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a molecular generative model based on the conditional variational autoencoder for de novo molecular design. It is specialized to control multiple molecular properties simultaneously by imposing them on a latent space. As a proof of concept, we demonstrate that it can be used to generate drug-like molecules with five target properties. We were also able to adjust a single property without changing the others and to manipulate it beyond the range of the dataset.[graphic not available: see fulltext]
引用
收藏
相关论文
共 50 条
  • [31] A Hybrid Model for QoS Prediction based on Improved Conditional Variational Autoencoder
    Wu, Mengwei
    Lu, Qin
    Wang, Yingxue
    Wang, Yichao
    Chen, Huanyu
    Li, Weixiao
    2022 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING, ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM, 2022, : 339 - 346
  • [32] Conditional Variational AutoEncoder based on Stochastic Attacks
    Zaid G.
    Bossuet L.
    Carbone M.
    Habrard A.
    Venelli A.
    IACR Transactions on Cryptographic Hardware and Embedded Systems, 2023, 2023 (02): : 310 - 357
  • [33] AlvaBuilder: A Software for De Novo Molecular Design
    Mauri, Andrea
    Bertola, Matteo
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 64 (07) : 2136 - 2142
  • [34] Entangled Conditional Adversarial Autoencoder for de Novo Drug Discovery
    Polykovskiy, Daniil
    Zhebrak, Alexander
    Vetrov, Dmitry
    Ivanenkov, Yan
    Aladinskiy, Vladimir
    Mamoshina, Polina
    Bozdaganyan, Marine
    Aliper, Alexander
    Zhavoronkov, Alex
    Kadurin, Artur
    MOLECULAR PHARMACEUTICS, 2018, 15 (10) : 4398 - 4405
  • [35] De novo molecular drug design benchmarking
    Grant, Lauren L.
    Sit, Clarissa S.
    RSC MEDICINAL CHEMISTRY, 2021, 12 (08): : 1273 - 1280
  • [36] De novo molecular design: Successes and challenges
    Jorgensen, William L.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [37] Conditional Variational Autoencoder with Balanced Pre-training for Generative Adversarial Networks
    Yao, Yuchong
    Wang, Xiaohui
    Ma, Yuanbang
    Fang, Han
    Wei, Jiaying
    Chen, Liyuan
    Anaissi, Ali
    Braytee, Ali
    2022 IEEE 9TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2022, : 156 - 165
  • [38] Multimodal Deep Generative Models for Trajectory Prediction: A Conditional Variational Autoencoder Approach
    Ivanovic, Boris
    Leung, Karen
    Schmerling, Edward
    Pavone, Marco
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02): : 295 - 302
  • [39] Scaffold-based molecular design with a graph generative model
    Lim, Jaechang
    Hwang, Sang-Yeon
    Moon, Seokhyun
    Kim, Seungsu
    Kim, Woo Youn
    CHEMICAL SCIENCE, 2020, 11 (04) : 1153 - 1164
  • [40] Graph-Based Genetic Algorithm for De Novo Molecular Design
    Herring, Robert H., III
    Eden, Mario R.
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON FOUNDATIONS OF COMPUTER-AIDED PROCESS DESIGN, 2014, 34 : 327 - 332