Molecular generative model based on conditional variational autoencoder for de novo molecular design

被引:0
|
作者
Jaechang Lim
Seongok Ryu
Jin Woo Kim
Woo Youn Kim
机构
[1] KAIST,Department of Chemistry
[2] KAIST,KI for Artificial Intelligence
来源
关键词
Molecular design; Conditional variational autoencoder; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a molecular generative model based on the conditional variational autoencoder for de novo molecular design. It is specialized to control multiple molecular properties simultaneously by imposing them on a latent space. As a proof of concept, we demonstrate that it can be used to generate drug-like molecules with five target properties. We were also able to adjust a single property without changing the others and to manipulate it beyond the range of the dataset.[graphic not available: see fulltext]
引用
收藏
相关论文
共 50 条
  • [21] AEGANAuth: Autoencoder GAN-Based Continuous Authentication With Conditional Variational Autoencoder Generative Adversarial Network
    Li, Yantao
    Ouyang, Caike
    Huang, Hongyu
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (16): : 27635 - 27650
  • [22] Conditional generative modeling for de novo protein design with hierarchical functions
    Kucera, Tim
    Togninalli, Matteo
    Meng-Papaxanthos, Laetitia
    BIOINFORMATICS, 2022, 38 (13) : 3454 - 3461
  • [23] A Variational Autoencoder Based Generative Model of Urban Human Mobility
    Huang, Dou
    Song, Xuan
    Fan, Zipei
    Jiang, Renhe
    Shibasaki, Ryosuke
    Zhang, Yu
    Wang, Haizhong
    Kato, Yugo
    2019 2ND IEEE CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL (MIPR 2019), 2019, : 425 - 430
  • [24] Molecular Property Prediction and Molecular Design Using a Supervised Grammar Variational Autoencoder
    Oliveira, Andre F.
    Da Silva, Juarez L. F.
    Quiles, Marcos G.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (04) : 817 - 828
  • [25] DNMG: Deep molecular generative model by fusion of 3D information for de novo drug design
    Song, Tao
    Ren, Yongqi
    Wang, Shuang
    Han, Peifu
    Wang, Lulu
    Li, Xue
    Rodriguez-Paton, Alfonso
    METHODS, 2023, 211 : 10 - 22
  • [26] Generative Model for Proposing Drug Candidates Satisfying Anticancer Properties Using a Conditional Variational Autoencoder
    Joo, Sunghoon
    Kim, Min Soo
    Yang, Jaeho
    Park, Jeahyun
    ACS OMEGA, 2020, 5 (30): : 18642 - 18650
  • [27] Nc-vae: normalised conditional diverse variational autoencoder guided de novo molecule generation
    Bhadwal, Arun Singh
    Kumar, Kamal
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (14): : 21207 - 21228
  • [28] cMolGPT: A Conditional Generative Pre-Trained Transformer for Target-Specific De Novo Molecular Generation
    Wang, Ye
    Zhao, Honggang
    Sciabola, Simone
    Wang, Wenlu
    MOLECULES, 2023, 28 (11):
  • [29] Widespread bathymetric outliers detection and elimination based on conditional variational autoencoder generative adversarial network
    Zhang R.
    Bian S.
    Liu Y.
    Li H.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2019, 48 (09): : 1182 - 1189
  • [30] Generative Design of Thermoset Shape Memory Polymers Driven by Chemical Group: A Conditional Variational Autoencoder Approach
    Das, Borun
    Peters, Andrew
    Li, Guoqiang
    Hei, Xiali
    JOURNAL OF POLYMER SCIENCE, 2025, 63 (06) : 1334 - 1344