On the stochastic SIS epidemic model in a periodic environment

被引:0
|
作者
Nicolas Bacaër
机构
[1] IRD (Institut de Recherche pour le Développement),
[2] UMMISCO,undefined
[3] Université Paris 6,undefined
[4] UMMISCO,undefined
来源
关键词
Hamilton–Jacobi equation; Epidemic model; Extinction; Periodic environment; 35F21; 60J80; 92D30;
D O I
暂无
中图分类号
学科分类号
摘要
In the stochastic SIS epidemic model with a contact rate a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a$$\end{document}, a recovery rate b<a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b<a$$\end{document}, and a population size N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}, the mean extinction time τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is such that (logτ)/N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\log \tau )/N$$\end{document} converges to c=b/a-1-log(b/a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c=b/a-1-\log (b/a)$$\end{document} as N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} grows to infinity. This article considers the more realistic case where the contact rate a(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(t)$$\end{document} is a periodic function whose average is bigger than b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}. Then (logτ)/N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\log \tau )/N$$\end{document} converges to a new limit C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document}, which is linked to a time-periodic Hamilton–Jacobi equation. When a(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(t)$$\end{document} is a cosine function with small amplitude or high (resp. low) frequency, approximate formulas for C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document} can be obtained analytically following the method used in Assaf et al. (Phys Rev E 78:041123, 2008). These results are illustrated by numerical simulations.
引用
收藏
页码:491 / 511
页数:20
相关论文
共 50 条
  • [41] Threshold Behavior in a Stochastic SIS Epidemic Model with Standard Incidence
    Lin, Yuguo
    Jiang, Daqing
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2014, 26 (04) : 1079 - 1094
  • [42] Dynamics of a stochastic SIS epidemic model with nonlinear incidence rates
    Ning Gao
    Yi Song
    Xinzeng Wang
    Jianxin Liu
    [J]. Advances in Difference Equations, 2019
  • [43] The persistence and extinction of a stochastic SIS epidemic model with Logistic growth
    Liu, Jiamin
    Chen, Lijuan
    Wei, Fengying
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [44] Threshold Behavior in a Stochastic SIS Epidemic Model with Standard Incidence
    Yuguo Lin
    Daqing Jiang
    [J]. Journal of Dynamics and Differential Equations, 2014, 26 : 1079 - 1094
  • [45] Classification of asymptotic behavior in a stochastic SIS epidemic model with vaccination
    Jin, Manli
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 521 : 661 - 666
  • [46] The threshold of stochastic SIS epidemic model with saturated incidence rate
    Qixing Han
    Daqing Jiang
    Shan Lin
    Chengjun Yuan
    [J]. Advances in Difference Equations, 2015
  • [47] The time to extinction for a stochastic SIS-household-epidemic model
    Tom Britton
    Peter Neal
    [J]. Journal of Mathematical Biology, 2010, 61 : 763 - 779
  • [48] Nonlinear Stochastic SIS Epidemic Model Incorporating Levy Process
    El Koufi, Amine
    [J]. COMPLEXITY, 2022, 2022
  • [49] Dynamics of a stochastic SIS epidemic model with nonlinear incidence rates
    Gao, Ning
    Song, Yi
    Wang, Xinzeng
    Liu, Jianxin
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [50] Extinction and persistence of a stochastic nonlinear SIS epidemic model with jumps
    Ge, Qing
    Ji, Guilin
    Xu, Jiabo
    Fan, Xiaolin
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 462 : 1120 - 1127