On the stochastic SIS epidemic model in a periodic environment

被引:0
|
作者
Nicolas Bacaër
机构
[1] IRD (Institut de Recherche pour le Développement),
[2] UMMISCO,undefined
[3] Université Paris 6,undefined
[4] UMMISCO,undefined
来源
关键词
Hamilton–Jacobi equation; Epidemic model; Extinction; Periodic environment; 35F21; 60J80; 92D30;
D O I
暂无
中图分类号
学科分类号
摘要
In the stochastic SIS epidemic model with a contact rate a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a$$\end{document}, a recovery rate b<a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b<a$$\end{document}, and a population size N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}, the mean extinction time τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is such that (logτ)/N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\log \tau )/N$$\end{document} converges to c=b/a-1-log(b/a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c=b/a-1-\log (b/a)$$\end{document} as N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} grows to infinity. This article considers the more realistic case where the contact rate a(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(t)$$\end{document} is a periodic function whose average is bigger than b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}. Then (logτ)/N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\log \tau )/N$$\end{document} converges to a new limit C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document}, which is linked to a time-periodic Hamilton–Jacobi equation. When a(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(t)$$\end{document} is a cosine function with small amplitude or high (resp. low) frequency, approximate formulas for C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document} can be obtained analytically following the method used in Assaf et al. (Phys Rev E 78:041123, 2008). These results are illustrated by numerical simulations.
引用
收藏
页码:491 / 511
页数:20
相关论文
共 50 条
  • [21] The asymptotic behavior of a stochastic SIS epidemic model with vaccination
    Zhao, Yanan
    Zhang, Qiumei
    Jiang, Daqing
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [22] The asymptotic behavior of a stochastic SIS epidemic model with vaccination
    Yanan Zhao
    Qiumei Zhang
    Daqing Jiang
    Advances in Difference Equations, 2015
  • [23] The global dynamics for a stochastic SIS epidemic model with isolation
    Chen, Yiliang
    Wen, Buyu
    Teng, Zhidong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 492 : 1604 - 1624
  • [24] The threshold of a stochastic SIS epidemic model with imperfect vaccination
    Liu, Qun
    Jiang, Daqing
    Shi, Ningzhong
    Hayat, Tasawar
    Alsaedi, Ahmed
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2018, 144 : 78 - 90
  • [25] Stochastic SIS epidemic model on network with Levy noise
    Yang, Hong
    Jin, Zhen
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2022, 40 (03) : 520 - 538
  • [26] Hamiltonian dynamics of the SIS epidemic model with stochastic fluctuations
    Gilberto M. Nakamura
    Alexandre S. Martinez
    Scientific Reports, 9
  • [27] Dynamics of a Stochastic SIS Epidemic Model with Saturated Incidence
    Chen, Can
    Kang, Yanmei
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [28] The extinction and persistence of the stochastic SIS epidemic model with vaccination
    Zhao, Yanan
    Jiang, Daqing
    O'Regan, Donal
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (20) : 4916 - 4927
  • [29] Hamiltonian dynamics of the SIS epidemic model with stochastic fluctuations
    Nakamura, Gilberto M.
    Martinez, Alexandre S.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [30] A stochastic SIS epidemic infectious diseases model with double stochastic perturbations
    Chen, Xingzhi
    Tian, Baodan
    Xu, Xin
    Yang, Ruoxi
    Zhong, Shouming
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2024, 17 (04)