On the stochastic SIS epidemic model in a periodic environment

被引:0
|
作者
Nicolas Bacaër
机构
[1] IRD (Institut de Recherche pour le Développement),
[2] UMMISCO,undefined
[3] Université Paris 6,undefined
[4] UMMISCO,undefined
来源
关键词
Hamilton–Jacobi equation; Epidemic model; Extinction; Periodic environment; 35F21; 60J80; 92D30;
D O I
暂无
中图分类号
学科分类号
摘要
In the stochastic SIS epidemic model with a contact rate a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a$$\end{document}, a recovery rate b<a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b<a$$\end{document}, and a population size N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}, the mean extinction time τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is such that (logτ)/N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\log \tau )/N$$\end{document} converges to c=b/a-1-log(b/a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c=b/a-1-\log (b/a)$$\end{document} as N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} grows to infinity. This article considers the more realistic case where the contact rate a(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(t)$$\end{document} is a periodic function whose average is bigger than b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}. Then (logτ)/N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\log \tau )/N$$\end{document} converges to a new limit C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document}, which is linked to a time-periodic Hamilton–Jacobi equation. When a(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(t)$$\end{document} is a cosine function with small amplitude or high (resp. low) frequency, approximate formulas for C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document} can be obtained analytically following the method used in Assaf et al. (Phys Rev E 78:041123, 2008). These results are illustrated by numerical simulations.
引用
收藏
页码:491 / 511
页数:20
相关论文
共 50 条
  • [31] Epidemic SIS model in air-polluted environment
    Tran Dinh Tuong
    [J]. Journal of Applied Mathematics and Computing, 2020, 64 : 53 - 69
  • [32] The deterministic SIS epidemic model in a Markovian random environment
    Antonis Economou
    Maria Jesus Lopez-Herrero
    [J]. Journal of Mathematical Biology, 2016, 73 : 91 - 121
  • [33] The deterministic SIS epidemic model in a Markovian random environment
    Economou, Antonis
    Jesus Lopez-Herrero, Maria
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2016, 73 (01) : 91 - 121
  • [34] Epidemic SIS model in air-polluted environment
    Tuong, Tran Dinh
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2020, 64 (1-2) : 53 - 69
  • [35] Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis
    Meng, Xinzhu
    Zhao, Shengnan
    Feng, Tao
    Zhang, Tonghua
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (01) : 227 - 242
  • [36] Dynamics for a class of stochastic SIS epidemic models with nonlinear incidence and periodic coefficients
    Rifhat, Ramziya
    Wang, Lei
    Teng, Zhidong
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 481 : 176 - 190
  • [37] Spatial diffusion and periodic evolving of domain in an SIS epidemic model
    Tong, Yachun
    Lin, Zhigui
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 61 (61)
  • [38] Periodic solutions and bifurcation in an SIS epidemic model with birth pulses
    Jiang, Guirong
    Yang, Qigui
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2009, 50 (3-4) : 498 - 508
  • [39] The threshold of stochastic SIS epidemic model with saturated incidence rate
    Han, Qixing
    Jiang, Daqing
    Lin, Shan
    Yuan, Chengjun
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [40] Asymptotic behavior of a multigroup SIS epidemic model with stochastic perturbation
    Jing Fu
    Qixing Han
    Yuguo Lin
    Daqing Jiang
    [J]. Advances in Difference Equations, 2015