Non-Hermitian Tridiagonal Random Matrices and Returns to the Origin of a Random Walk

被引:0
|
作者
G. M. Cicuta
M. Contedini
L. Molinari
机构
[1] Università di Parma,Dipartimento di Fisica
[2] and INFN,Dipartimento di Fisica
[3] Gruppo di Parma collegato alla Sezione di Milano,undefined
[4] Università di Milano,undefined
[5] and INFN,undefined
[6] Sezione di Milano,undefined
来源
关键词
band random matrices; non-hermetian random matrices; random walks;
D O I
暂无
中图分类号
学科分类号
摘要
We study a class of tridiagonal matrix models, the “q-roots of unity” models, which includes the sign (q=2) and the clock (q=∞) models by Feinberg and Zee. We find that the eigenvalue densities are bounded by and have the symmetries of the regular polygon with 2q sides, in the complex plane. Furthermore, the averaged traces of Mk are integers that count closed random walks on the line such that each site is visited a number of times multiple of q. We obtain an explicit evaluation for them.
引用
收藏
页码:685 / 699
页数:14
相关论文
共 50 条