Non-Hermitian Tridiagonal Random Matrices and Returns to the Origin of a Random Walk

被引:0
|
作者
G. M. Cicuta
M. Contedini
L. Molinari
机构
[1] Università di Parma,Dipartimento di Fisica
[2] and INFN,Dipartimento di Fisica
[3] Gruppo di Parma collegato alla Sezione di Milano,undefined
[4] Università di Milano,undefined
[5] and INFN,undefined
[6] Sezione di Milano,undefined
来源
关键词
band random matrices; non-hermetian random matrices; random walks;
D O I
暂无
中图分类号
学科分类号
摘要
We study a class of tridiagonal matrix models, the “q-roots of unity” models, which includes the sign (q=2) and the clock (q=∞) models by Feinberg and Zee. We find that the eigenvalue densities are bounded by and have the symmetries of the regular polygon with 2q sides, in the complex plane. Furthermore, the averaged traces of Mk are integers that count closed random walks on the line such that each site is visited a number of times multiple of q. We obtain an explicit evaluation for them.
引用
收藏
页码:685 / 699
页数:14
相关论文
共 50 条
  • [31] The Thouless formula for random non-Hermitian Jacobi matrices
    Ilya Ya. Goldsheid
    Boris A. Khoruzhenko
    Israel Journal of Mathematics, 2005, 148 : 331 - 346
  • [32] Quaternionic R transform and non-Hermitian random matrices
    Burda, Zdzislaw
    Swiech, Artur
    PHYSICAL REVIEW E, 2015, 92 (05):
  • [33] Non-Hermitian Random Matrices and Integrable Quantum Hamiltonians
    Akuzawa, T.
    Wadati, M.
    Journal of the Physical Society of Japan, 65 (06):
  • [34] Rank One Non-Hermitian Perturbations of Hermitian β-Ensembles of Random Matrices
    Kozhan, Rostyslav
    JOURNAL OF STATISTICAL PHYSICS, 2017, 168 (01) : 92 - 108
  • [35] RANDOM MATRICES: UNIVERSALITY OF LOCAL SPECTRAL STATISTICS OF NON-HERMITIAN MATRICES
    Tao, Terence
    Vu, Van
    ANNALS OF PROBABILITY, 2015, 43 (02): : 782 - 874
  • [36] PARTIAL LINEAR EIGENVALUE STATISTICS FOR NON-HERMITIAN RANDOM MATRICES
    O'Rourke, S.
    Williams, N.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2023, 67 (04) : 613 - 632
  • [37] Analytic approach for the number statistics of non-Hermitian random matrices
    Perez Castillo, Isaac
    Guzman-Gonzalez, Edgar
    Ramos Sanchez, Antonio Tonatiuh
    Metz, Fernando L.
    PHYSICAL REVIEW E, 2021, 103 (06)
  • [38] Rate of convergence for products of independent non-Hermitian random matrices
    Jalowy, Jonas
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [39] Non-Hermitian random matrices and the Calogero-Sutherland model
    Shukla, P
    PHYSICAL REVIEW LETTERS, 2001, 87 (19)
  • [40] Spectra of Sparse Non-Hermitian Random Matrices: An Analytical Solution
    Neri, I.
    Metz, F. L.
    PHYSICAL REVIEW LETTERS, 2012, 109 (03)