On Combinatorial Expansion of the Conformal Blocks Arising from AGT Conjecture

被引:0
|
作者
Vasyl A. Alba
Vladimir A. Fateev
Alexey V. Litvinov
Grigory M. Tarnopolskiy
机构
[1] Landau Institute for Theoretical Physics,Department of General and Applied Physics
[2] Bogolyubov Institute for Theoretical Physics NASU,Laboratoire de Physique Théorique et Astroparticules
[3] Moscow Institute of Physics and Technology,undefined
[4] Institute for Theoretical and Experimental Physics,undefined
[5] Université Montpellier II,undefined
[6] UMR5207 CNRS-UM2,undefined
来源
关键词
81T40; 81T60; conformal field theory; gauge theory;
D O I
暂无
中图分类号
学科分类号
摘要
In their recent paper, Alday et al. (Lett Math Phys 91:167–197, 2010) proposed a relation between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N}=2}$$\end{document} four-dimensional supersymmetric gauge theories and two-dimensional conformal field theories. As part of their conjecture they gave an explicit combinatorial formula for the expansion of the conformal blocks inspired by the exact form of the instanton part of the Nekrasov partition function. In this paper we study the origin of such an expansion from a CFT point of view. We consider the algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}={\sf Vir} \otimes\mathcal{H}}$$\end{document} which is the tensor product of mutually commuting Virasoro and Heisenberg algebras and discover the special orthogonal basis of states in the highest weight representations of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document}. The matrix elements of primary fields in this basis have a very simple factorized form and coincide with the function called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Z_{{\sf bif}}}$$\end{document} appearing in the instanton counting literature. Having such a simple basis, the problem of computation of the conformal blocks simplifies drastically and can be shown to lead to the expansion proposed in Alday et al. (2010). We found that this basis diagonalizes an infinite system of commuting Integrals of Motion related to Benjamin–Ono integrable hierarchy.
引用
收藏
相关论文
共 50 条
  • [41] Some systems theorems arising from the Bieberbach conjecture
    Helton, JW
    Weening, F
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 1996, 6 (01) : 65 - 82
  • [42] The ε-expansion from conformal field theory
    Rychkov, Slava
    Tan, Zhong Ming
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (29)
  • [43] SOME DIRICHLET PROBLEMS ARISING FROM CONFORMAL GEOMETRY
    Li, Qi-Rui
    Sheng, Weimin
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 251 (02) : 337 - 359
  • [44] A combinatorial partition of Mersenne numbers arising from spectroscopy
    Eakin, R. T.
    JOURNAL OF NUMBER THEORY, 2012, 132 (10) : 2166 - 2183
  • [45] Conformal blocks from Wilson lines with loop corrections
    Hikida, Yasuaki
    Uetoko, Takahiro
    PHYSICAL REVIEW D, 2018, 97 (08)
  • [46] Wilson loop invariants from WN conformal blocks
    Alekseev, Oleg
    Novaes, Fabio
    NUCLEAR PHYSICS B, 2015, 901 : 461 - 479
  • [47] From conformal blocks to path integrals in the Vaidya geometry
    Anous, Tarek
    Hartman, Thomas
    Rovai, Antonin
    Sonner, Julian
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (09):
  • [48] Holographic conformal blocks from interacting Wilson lines
    Besken, Mert
    Hegde, Ashwin
    Hijano, Eliot
    Kraus, Per
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (08):
  • [49] From conformal blocks to path integrals in the Vaidya geometry
    Tarek Anous
    Thomas Hartman
    Antonin Rovai
    Julian Sonner
    Journal of High Energy Physics, 2017
  • [50] Excited states in spin chains from conformal blocks
    Herwerth, Benedikt
    Sierra, German
    Tu, Hong-Hao
    Nielsen, Anne E. B.
    PHYSICAL REVIEW B, 2015, 91 (23)