On Combinatorial Expansion of the Conformal Blocks Arising from AGT Conjecture

被引:0
|
作者
Vasyl A. Alba
Vladimir A. Fateev
Alexey V. Litvinov
Grigory M. Tarnopolskiy
机构
[1] Landau Institute for Theoretical Physics,Department of General and Applied Physics
[2] Bogolyubov Institute for Theoretical Physics NASU,Laboratoire de Physique Théorique et Astroparticules
[3] Moscow Institute of Physics and Technology,undefined
[4] Institute for Theoretical and Experimental Physics,undefined
[5] Université Montpellier II,undefined
[6] UMR5207 CNRS-UM2,undefined
来源
关键词
81T40; 81T60; conformal field theory; gauge theory;
D O I
暂无
中图分类号
学科分类号
摘要
In their recent paper, Alday et al. (Lett Math Phys 91:167–197, 2010) proposed a relation between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N}=2}$$\end{document} four-dimensional supersymmetric gauge theories and two-dimensional conformal field theories. As part of their conjecture they gave an explicit combinatorial formula for the expansion of the conformal blocks inspired by the exact form of the instanton part of the Nekrasov partition function. In this paper we study the origin of such an expansion from a CFT point of view. We consider the algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}={\sf Vir} \otimes\mathcal{H}}$$\end{document} which is the tensor product of mutually commuting Virasoro and Heisenberg algebras and discover the special orthogonal basis of states in the highest weight representations of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document}. The matrix elements of primary fields in this basis have a very simple factorized form and coincide with the function called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Z_{{\sf bif}}}$$\end{document} appearing in the instanton counting literature. Having such a simple basis, the problem of computation of the conformal blocks simplifies drastically and can be shown to lead to the expansion proposed in Alday et al. (2010). We found that this basis diagonalizes an infinite system of commuting Integrals of Motion related to Benjamin–Ono integrable hierarchy.
引用
收藏
相关论文
共 50 条
  • [31] A combinatorial identity arising from symplectic geometry
    Hao Ding
    Acta Mathematica Sinica, English Series, 2009, 25 : 1497 - 1506
  • [32] A COMBINATORIAL IDENTITY ARISING FROM COBORDISM THEORY
    Gijswijt, D.
    Moree, P.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2005, 74 (02): : 199 - 203
  • [33] Quantum integrable systems from conformal blocks
    Chen, Heng-Yu
    Qualls, Joshua D.
    PHYSICAL REVIEW D, 2017, 95 (10)
  • [34] Conformal blocks from celestial gluon amplitudes
    Fan, Wei
    Fotopoulos, Angelos
    Stieberger, Stephan
    Taylor, Tomasz R.
    Zhu, Bin
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (05)
  • [35] Trinion conformal blocks from topological strings
    Coman, Ioana
    Pomoni, Elli
    Teschner, Joerg
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (09)
  • [36] Defect conformal blocks from Appell functions
    Ilija Burić
    Volker Schomerus
    Journal of High Energy Physics, 2021
  • [37] Trinion conformal blocks from topological strings
    Ioana Coman
    Elli Pomoni
    Joerg Teschner
    Journal of High Energy Physics, 2020
  • [38] Conformal blocks from celestial gluon amplitudes
    Wei Fan
    Angelos Fotopoulos
    Stephan Stieberger
    Tomasz R. Taylor
    Bin Zhu
    Journal of High Energy Physics, 2021
  • [39] Defect conformal blocks from Appell functions
    Buric, Ilija
    Schomerus, Volker
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (05)
  • [40] An arithmetic function arising from Carmichael's conjecture
    Luca, Florian
    Pollack, Paul
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2011, 23 (03): : 697 - 714