On Combinatorial Expansion of the Conformal Blocks Arising from AGT Conjecture

被引:0
|
作者
Vasyl A. Alba
Vladimir A. Fateev
Alexey V. Litvinov
Grigory M. Tarnopolskiy
机构
[1] Landau Institute for Theoretical Physics,Department of General and Applied Physics
[2] Bogolyubov Institute for Theoretical Physics NASU,Laboratoire de Physique Théorique et Astroparticules
[3] Moscow Institute of Physics and Technology,undefined
[4] Institute for Theoretical and Experimental Physics,undefined
[5] Université Montpellier II,undefined
[6] UMR5207 CNRS-UM2,undefined
来源
关键词
81T40; 81T60; conformal field theory; gauge theory;
D O I
暂无
中图分类号
学科分类号
摘要
In their recent paper, Alday et al. (Lett Math Phys 91:167–197, 2010) proposed a relation between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N}=2}$$\end{document} four-dimensional supersymmetric gauge theories and two-dimensional conformal field theories. As part of their conjecture they gave an explicit combinatorial formula for the expansion of the conformal blocks inspired by the exact form of the instanton part of the Nekrasov partition function. In this paper we study the origin of such an expansion from a CFT point of view. We consider the algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}={\sf Vir} \otimes\mathcal{H}}$$\end{document} which is the tensor product of mutually commuting Virasoro and Heisenberg algebras and discover the special orthogonal basis of states in the highest weight representations of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document}. The matrix elements of primary fields in this basis have a very simple factorized form and coincide with the function called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Z_{{\sf bif}}}$$\end{document} appearing in the instanton counting literature. Having such a simple basis, the problem of computation of the conformal blocks simplifies drastically and can be shown to lead to the expansion proposed in Alday et al. (2010). We found that this basis diagonalizes an infinite system of commuting Integrals of Motion related to Benjamin–Ono integrable hierarchy.
引用
收藏
相关论文
共 50 条
  • [21] On the products arising from the Kummer conjecture
    Jun Huai Zhang
    Yuan Yi
    Ping Xi
    Acta Mathematica Sinica, English Series, 2012, 28 : 1677 - 1688
  • [22] On the Products Arising from the Kummer Conjecture
    Jun Huai ZHANG
    Yuan YI
    Ping XI
    ActaMathematicaSinica, 2012, 28 (08) : 1677 - 1688
  • [23] On the Products Arising from the Kummer Conjecture
    Jun Huai ZHANG
    Yuan YI
    Ping XI
    Acta Mathematica Sinica,English Series, 2012, (08) : 1677 - 1688
  • [24] On the products arising from the Kummer conjecture
    Zhang, Jun Huai
    Yi, Yuan
    Xi, Ping
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (08) : 1677 - 1688
  • [25] Non-conformal limit of AGT relation from the 1-point torus conformal block
    V. Alba
    And. Morozov
    JETP Letters, 2010, 90 : 708 - 712
  • [26] Non-conformal limit of AGT relation from the 1-point torus conformal block
    Alba, V.
    Morozov, And.
    JETP LETTERS, 2010, 90 (11) : 708 - 712
  • [27] N=1 superconformal blocks with Ramond fields from AGT correspondence
    Belavin, Alexander
    Mukhametzhanov, Baur
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (01):
  • [28] N = 1 superconformal blocks with Ramond fields from AGT correspondence
    Alexander Belavin
    Baur Mukhametzhanov
    Journal of High Energy Physics, 2013
  • [29] A Combinatorial Identity Arising from Symplectic Geometry
    Hao DINGSchool of Mathematical Sciences
    ActaMathematicaSinica(EnglishSeries), 2009, 25 (09) : 1497 - 1506
  • [30] A combinatorial identity arising from symplectic geometry
    Ding, Hao
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (09) : 1497 - 1506