On Combinatorial Expansion of the Conformal Blocks Arising from AGT Conjecture

被引:0
|
作者
Vasyl A. Alba
Vladimir A. Fateev
Alexey V. Litvinov
Grigory M. Tarnopolskiy
机构
[1] Landau Institute for Theoretical Physics,Department of General and Applied Physics
[2] Bogolyubov Institute for Theoretical Physics NASU,Laboratoire de Physique Théorique et Astroparticules
[3] Moscow Institute of Physics and Technology,undefined
[4] Institute for Theoretical and Experimental Physics,undefined
[5] Université Montpellier II,undefined
[6] UMR5207 CNRS-UM2,undefined
来源
关键词
81T40; 81T60; conformal field theory; gauge theory;
D O I
暂无
中图分类号
学科分类号
摘要
In their recent paper, Alday et al. (Lett Math Phys 91:167–197, 2010) proposed a relation between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N}=2}$$\end{document} four-dimensional supersymmetric gauge theories and two-dimensional conformal field theories. As part of their conjecture they gave an explicit combinatorial formula for the expansion of the conformal blocks inspired by the exact form of the instanton part of the Nekrasov partition function. In this paper we study the origin of such an expansion from a CFT point of view. We consider the algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}={\sf Vir} \otimes\mathcal{H}}$$\end{document} which is the tensor product of mutually commuting Virasoro and Heisenberg algebras and discover the special orthogonal basis of states in the highest weight representations of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document}. The matrix elements of primary fields in this basis have a very simple factorized form and coincide with the function called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Z_{{\sf bif}}}$$\end{document} appearing in the instanton counting literature. Having such a simple basis, the problem of computation of the conformal blocks simplifies drastically and can be shown to lead to the expansion proposed in Alday et al. (2010). We found that this basis diagonalizes an infinite system of commuting Integrals of Motion related to Benjamin–Ono integrable hierarchy.
引用
收藏
相关论文
共 50 条
  • [1] On Combinatorial Expansion of the Conformal Blocks Arising from AGT Conjecture
    Alba, Vasyl A.
    Fateev, Vladimir A.
    Litvinov, Alexey V.
    Tarnopolskiy, Grigory M.
    LETTERS IN MATHEMATICAL PHYSICS, 2011, 98 (01) : 33 - 64
  • [2] Generalized Jack and Macdonald polynomials arising from AGT conjecture
    Ohkubo, Y.
    XXIV INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-24), 2017, 804
  • [3] Check of AGT relation for conformal blocks on sphere
    Alba, V.
    Morozov, A.
    NUCLEAR PHYSICS B, 2010, 840 (03) : 441 - 468
  • [4] Combinatorial expansions of conformal blocks
    A. V. Marshakov
    A. D. Mironov
    A. Yu. Morozov
    Theoretical and Mathematical Physics, 2010, 164 : 831 - 852
  • [5] Combinatorial expansions of conformal blocks
    Marshakov, A. V.
    Mironov, A. D.
    Morozov, A. Yu.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2010, 164 (01) : 831 - 852
  • [6] The properties of conformal blocks, the AGT hypothesis, and knot polynomials
    Morozov, A. A.
    PHYSICS OF PARTICLES AND NUCLEI, 2016, 47 (05) : 775 - 837
  • [7] The properties of conformal blocks, the AGT hypothesis, and knot polynomials
    A. A. Morozov
    Physics of Particles and Nuclei, 2016, 47 : 775 - 837
  • [8] Conformal blocks of WN minimal models and AGT correspondence
    Alkalaev, K. B.
    Belavin, V. A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (07):
  • [9] AGT conjecture and integrable structure of conformal field theory for c=1
    Belavin, A.
    Belavin, V.
    NUCLEAR PHYSICS B, 2011, 850 (01) : 199 - 213
  • [10] Radial expansion for spinning conformal blocks
    Miguel S. Costa
    Tobias Hansen
    João Penedones
    Emilio Trevisani
    Journal of High Energy Physics, 2016