Kernel based local matching network for video object segmentation

被引:0
|
作者
Guoqiang Wang
Lan Li
Min Zhu
Rui Zhao
Xiang Zhang
机构
[1] Sichuan University,
[2] University of Electronic Science and Technology of China,undefined
[3] Shenzhen Polytechnic University,undefined
来源
关键词
Video object segmentation; Sapce-time memory network; Kernel guidance;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, the methods based on space-time memory network have achieved advanced performance in semi-supervised video object segmentation, which has attracted wide attention. However, this kind of methods still have a fatal limitation. It has the interference problem of similar objects caused by the way of non-local matching, which seriously limits the performance of video object segmentation. To solve this problem, we propose a Kernel-guided Attention Matching Network (KAMNet) by the use of local matching instead of non-local matching. At first, KAMNet uses spatio-temporal attention mechanism to enhance the model’s discrimination between foreground objects and background areas. Then KAMNet utilizes gaussian kernel to guide the matching between the current frame and the reference set. Because the gaussian kernel decays away from the center, it can limit the matching to the central region, thus achieving local matching. Our KAMNet gets speed-accuracy trade-off on benchmark datasets DAVIS 2016 (J&F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {J \& F}$$\end{document} of 87.6%) and DAVIS 2017 (J&F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {J \& F}$$\end{document} of 76.0%) with 0.12 second per frame.
引用
收藏
相关论文
共 50 条
  • [41] CRVOS: CLUE REFINING NETWORK FOR VIDEO OBJECT SEGMENTATION
    Cho, Suhwan
    Cho, MyeongAh
    Chung, Tae-young
    Lee, Heansung
    Lee, Sangyoun
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2301 - 2305
  • [42] DMVOS: Discriminative Matching for real-time Video Object Segmentation
    Wen, Peisong
    Yang, Ruolin
    Xu, Qianqian
    Qian, Chen
    Huang, Qingming
    Cong, Runming
    Si, Jianlou
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 2048 - 2056
  • [43] Robust Video Object Segmentation via Propagating Seams and Matching Superpixels
    Liang, Yun
    Zhang, Yuqing
    Wu, Yihan
    Tu, Shuqin
    Liu, Caixing
    IEEE ACCESS, 2020, 8 : 53766 - 53776
  • [44] VIDEO OBJECT MATCHING BASED ON SIFT ALGORITHM
    Hu, Xuelong
    Tang, Yingcheng
    Zhang, Zhenghua
    2008 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND SIGNAL PROCESSING, VOLS 1 AND 2, 2007, : 412 - 415
  • [45] Semi-Supervised Video Object Segmentation Based on Local and Global Consistency Learning
    Liang, Huagang
    Liu, Lihua
    Bo, Ying
    Zuo, Chao
    IEEE ACCESS, 2021, 9 : 127293 - 127304
  • [46] Video object segmentation based on object enhancement and region merging
    Ryan, Ken
    Amer, Aishy
    Gagnon, Langis
    2006 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO - ICME 2006, VOLS 1-5, PROCEEDINGS, 2006, : 273 - +
  • [47] Video Segmentation Framework Based on Multi-kernel Representations and Feature Relevance Analysis for Object Classification
    Molina-Giraldo, S.
    Carvajal-Gonzalez, J.
    Alvarez-Meza, A. M.
    Castellanos-Dominguez, G.
    PATTERN RECOGNITION APPLICATIONS AND METHODS, ICPRAM 2013, 2015, 318 : 273 - 283
  • [48] Local Memory Read-and-Comparator for Video Object Segmentation
    Heo, Yuk
    Koh, Yeong Jun
    Kim, Chang-Su
    IEEE ACCESS, 2022, 10 : 90004 - 90016
  • [49] Video Object Segmentation Based on Superpixel Trajectories
    Abdelwahab, Mohamed A.
    Abdelwahab, Moataz M.
    Uchiyama, Hideaki
    Shimada, Atsushi
    Taniguchi, Rin-ichiro
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2016), 2016, 9730 : 191 - 197
  • [50] Label prediction and local segmentation for accurate video object tracking
    Foret, G
    Bertolino, P
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2003, PTS 1-3, 2003, 5150 : 272 - 282