DMVOS: Discriminative Matching for real-time Video Object Segmentation

被引:14
|
作者
Wen, Peisong [1 ,2 ]
Yang, Ruolin [3 ,4 ]
Xu, Qianqian [1 ]
Qian, Chen [4 ]
Huang, Qingming [1 ,2 ,5 ,6 ]
Cong, Runming [7 ]
Si, Jianlou [4 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing, Peoples R China
[3] Beijing Univ Posts & Telecommun, Beijing, Peoples R China
[4] SenseTime, Beijing, Peoples R China
[5] Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing, Peoples R China
[6] Peng Cheng Lab, Shenzhen, Peoples R China
[7] Beijing Jiaotong Univ, Inst Informat Sci, Beijing, Peoples R China
基金
北京市自然科学基金; 国家重点研发计划; 中国国家自然科学基金;
关键词
Video object segmentation; Real-time tracker; Isometric matching; Instance center offset;
D O I
10.1145/3394171.3414035
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Though recent methods on semi-supervised video object segmentation (VOS) have achieved an appreciable improvement of segmentation accuracy, it is still hard to get an adequate speed-accuracy balance when facing real-world application scenarios. In this work, we propose Discriminative Matching for real-time Video Object Segmentation (DMVOS), a real-time VOS framework with high-accuracy to fill this gap. Based on the matching mechanism, our framework introduces discriminative information through the Isometric Correlation module and the Instance Center Offset module. Specifically, the isometric correlation module learns a pixel-level similarity map with semantic discriminability, and the instance center offset module is applied to exploit the instance-level spatial discriminability. Experiments on two benchmark datasets show that our model achieves state-of-the-art performance with extremely fast speed, for example, J&F of 87.8% on DAVIS-2016 validation set with 35 milliseconds per frame.
引用
收藏
页码:2048 / 2056
页数:9
相关论文
共 50 条
  • [1] SwiftNet: Real-time Video Object Segmentation
    Wang, Haochen
    Jiang, Xiaolong
    Ren, Haibing
    Hu, Yao
    Bai, Song
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 1296 - 1305
  • [2] Discriminative Focus of Attention for Real-Time Object Detection in Video
    Saptharishi, Mahesh
    Lipchin, Aleksey
    Lisin, Dimitri
    [J]. 2012 IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS), 2012, : 85 - 90
  • [3] Real-time video object segmentation for MPEG encoded video sequences
    Porikli, F
    [J]. REAL-TIME IMAGING VIII, 2004, 5297 : 195 - 203
  • [4] Real-time video object segmentation using HSV space
    Li, N
    Bu, JJ
    Chen, C
    [J]. 2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2002, : 85 - 88
  • [5] Real-time object matching
    Huang, AM
    Gao, Z
    Dai, B
    Luo, L
    [J]. APPLICATIONS OF DIGITAL IMAGE PROCESSING XXI, 1998, 3460 : 755 - 760
  • [6] Real-time and multi-video-object segmentation for compressed video sequences
    Fu Wenxiu
    Wang Bin
    Liu Ming
    [J]. ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 3, PROCEEDINGS, 2007, : 747 - +
  • [7] Real-time object segmentation using disparity map of stereo matching
    Han, Dongil
    Lee, Byoungmoo
    Cho, Jae Il
    Hwang, Dae-Hwan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 205 (02) : 770 - 777
  • [8] Real-time video segmentation
    Dibos, F
    Pelletier, S
    Koep, G
    [J]. AVSS 2005: ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE, PROCEEDINGS, 2005, : 382 - 387
  • [9] Adaptive Template and Transition Map for Real-Time Video Object Segmentation
    Park, Hyojin
    Yoo, Jayeon
    Venkatesh, Ganesh
    Kwak, Nojun
    [J]. IEEE ACCESS, 2021, 9 : 116914 - 116926
  • [10] Adaptive Template and Transition Map for Real-Time Video Object Segmentation
    Park, Hyojin
    Yoo, Jayeon
    Venkatesh, Ganesh
    Kwak, Nojun
    [J]. IEEE Access, 2021, 9 : 116914 - 116926