Real-time and multi-video-object segmentation for compressed video sequences

被引:0
|
作者
Fu Wenxiu [1 ,2 ]
Wang Bin [1 ,2 ]
Liu Ming [1 ,2 ]
机构
[1] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing, Peoples R China
[2] Jilin Univ, Sch Commun Engn, Changchun, Peoples R China
来源
ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 3, PROCEEDINGS | 2007年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a real-time object segmentation method based on Gaussian Mixture Model(GMM) for MPEG compressed video. Computational superiority and multi video objects are the main advantages of compressed domain processing. In the paper, first, we introduce the macro-block structure of the WEG encoded video and the preprocession of video vectors, then we build a GALV of motion vectors and adopt the genetic-based expectation-maximization algorithm (GA-EM) to compute its multivariate parameters. It is able to estimate automatically the number of objects of the motion model using the minimum description length (AML) criterion. At last, we give the steps of objects extraction. It is proved that the algorithm is real-time and effective from the experiment results.
引用
收藏
页码:747 / +
页数:2
相关论文
共 50 条
  • [1] Multi-Video-Object Segmentation based on SOFM Network for Compressed Video Sequences
    Fu Wenxiu
    Wang Lei
    Wang Xu
    ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 3, PROCEEDINGS, 2008, : 255 - 259
  • [2] Real-time video object segmentation for MPEG encoded video sequences
    Porikli, F
    REAL-TIME IMAGING VIII, 2004, 5297 : 195 - 203
  • [3] REAL TIME COMPRESSED VIDEO OBJECT SEGMENTATION
    Tan, Zhentao
    Liu, Bin
    Li, Weihai
    Yu, Nenghai
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 628 - 633
  • [4] Real Time Video Object Segmentation in Compressed Domain
    Tan, Zhentao
    Liu, Bin
    Chu, Qi
    Zhong, Hangshi
    Wu, Yue
    Li, Weihai
    Yu, Nenghai
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (01) : 175 - 188
  • [5] Real-time video object segmentation in H.264 compressed domain
    Mak, C. -M.
    Cham, W. -K.
    IET IMAGE PROCESSING, 2009, 3 (05) : 272 - 285
  • [6] SwiftNet: Real-time Video Object Segmentation
    Wang, Haochen
    Jiang, Xiaolong
    Ren, Haibing
    Hu, Yao
    Bai, Song
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 1296 - 1305
  • [7] Real-Time Moving Object Segmentation and Classification From HEVC Compressed Surveillance Video
    Zhao, Liang
    He, Zhihai
    Cao, Wenming
    Zhao, Debin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (06) : 1346 - 1357
  • [8] Real-time Object Detection and Tracking in Video Sequences
    Dornaika, F.
    Chakik, F.
    INTELLIGENT ROBOTS AND COMPUTER VISION XXVII: ALGORITHMS AND TECHNIQUES, 2010, 7539
  • [9] Accelerating Video Object Segmentation with Compressed Video
    Xu, Kai
    Yao, Angela
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1332 - 1341
  • [10] Real-time video segmentation
    Dibos, F
    Pelletier, S
    Koep, G
    AVSS 2005: ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE, PROCEEDINGS, 2005, : 382 - 387