Kernel based local matching network for video object segmentation

被引:0
|
作者
Guoqiang Wang
Lan Li
Min Zhu
Rui Zhao
Xiang Zhang
机构
[1] Sichuan University,
[2] University of Electronic Science and Technology of China,undefined
[3] Shenzhen Polytechnic University,undefined
来源
关键词
Video object segmentation; Sapce-time memory network; Kernel guidance;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, the methods based on space-time memory network have achieved advanced performance in semi-supervised video object segmentation, which has attracted wide attention. However, this kind of methods still have a fatal limitation. It has the interference problem of similar objects caused by the way of non-local matching, which seriously limits the performance of video object segmentation. To solve this problem, we propose a Kernel-guided Attention Matching Network (KAMNet) by the use of local matching instead of non-local matching. At first, KAMNet uses spatio-temporal attention mechanism to enhance the model’s discrimination between foreground objects and background areas. Then KAMNet utilizes gaussian kernel to guide the matching between the current frame and the reference set. Because the gaussian kernel decays away from the center, it can limit the matching to the central region, thus achieving local matching. Our KAMNet gets speed-accuracy trade-off on benchmark datasets DAVIS 2016 (J&F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {J \& F}$$\end{document} of 87.6%) and DAVIS 2017 (J&F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {J \& F}$$\end{document} of 76.0%) with 0.12 second per frame.
引用
收藏
相关论文
共 50 条
  • [31] Video Object Segmentation Based on Disparity
    Xingming, Ouyang
    Wei, Wei
    ADVANCES IN WEB AND NETWORK TECHNOLOGIES, AND INFORMATION MANAGEMENT, 2009, 5731 : 36 - 44
  • [32] Object-based video coding by global-to-local motion segmentation
    Shamim, A
    Robinson, JA
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2002, 12 (12) : 1106 - 1116
  • [33] Siamese network based on global and local feature matching for object tracking
    Zhao, Ziming
    Zuo, Mengle
    Yu, Junyang
    He, Xin
    Song, Yalin
    Zhai, Rui
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (06)
  • [34] Spatiotemporal Graph Neural Network based Mask Reconstruction for Video Object Segmentation
    Liu, Daizong
    Xu, Shuangjie
    Liu, Xiao-Yang
    Xu, Zichuan
    Wei, Wei
    Zhou, Pan
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 2100 - 2108
  • [35] Guided Co-Segmentation Network for Fast Video Object Segmentation
    Liu, Weide
    Lin, Guosheng
    Zhang, Tianyi
    Liu, Zichuan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (04) : 1607 - 1617
  • [36] Efficient Video Object Segmentation via Network Modulation
    Yang, Linjie
    Wang, Yanran
    Xiong, Xuehan
    Yang, Jianchao
    Katsaggelos, Aggelos K.
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 6499 - 6507
  • [37] Efficient Regional Memory Network for Video Object Segmentation
    Xie, Haozhe
    Yao, Hongxun
    Zhou, Shangchen
    Zhang, Shengping
    Sun, Wenxiu
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 1286 - 1295
  • [38] Siamese Network with Interactive Transformer for Video Object Segmentation
    Lan, Meng
    Zhang, Jing
    He, Fengxiang
    Zhang, Lefei
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 1228 - 1236
  • [39] Robust and Efficient Memory Network for Video Object Segmentation
    Chen, Yadang
    Zhang, Dingwei
    Yang, Zhi-Xin
    Wu, Enhua
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1769 - 1774
  • [40] Deep Transport Network for Unsupervised Video Object Segmentation
    Zhang, Kaihua
    Zhao, Zicheng
    Liu, Dong
    Liu, Qingshan
    Liu, Bo
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8761 - 8770