Random walks in random Dirichlet environment are transient in dimension d ≥ 3

被引:0
|
作者
Christophe Sabot
机构
[1] Université de Lyon,CNRS UMR5208, Institut Camille Jordan
[2] Université Lyon 1,undefined
来源
Probability Theory and Related Fields | 2011年 / 151卷
关键词
Random walk in random environment; Dirichlet distribution; Reinforced random walks; Max-Flow Min-Cut theorem; Primary 60K37; 60K35; Secondary 5C20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider random walks in random Dirichlet environment (RWDE) which is a special type of random walks in random environment where the exit probabilities at each site are i.i.d. Dirichlet random variables. On \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}^d}$$\end{document}, RWDE are parameterized by a 2d-uplet of positive reals. We prove that for all values of the parameters, RWDE are transient in dimension d ≥ 3. We also prove that the Green function has some finite moments and we characterize the finite moments. Our result is more general and applies for example to finitely generated symmetric transient Cayley graphs. In terms of reinforced random walks it implies that directed edge reinforced random walks are transient for d ≥ 3.
引用
收藏
页码:297 / 317
页数:20
相关论文
共 50 条
  • [31] Survival of Branching Random Walks in Random Environment
    Nina Gantert
    Sebastian Müller
    Serguei Popov
    Marina Vachkovskaia
    Journal of Theoretical Probability, 2010, 23 : 1002 - 1014
  • [32] Survival of Branching Random Walks in Random Environment
    Gantert, Nina
    Mueller, Sebastian
    Popov, Serguei
    Vachkovskaia, Marina
    JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (04) : 1002 - 1014
  • [33] On transient phenomena in random walks
    Sakhanenko, AI
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2004, 49 (02) : 354 - 367
  • [34] Lingering Random Walks in Random Environment on a Strip
    Erwin Bolthausen
    Ilya Goldsheid
    Communications in Mathematical Physics, 2008, 278 : 253 - 288
  • [35] PERSISTENT RANDOM-WALKS IN RANDOM ENVIRONMENT
    TOTH, B
    PROBABILITY THEORY AND RELATED FIELDS, 1986, 71 (04) : 615 - 625
  • [36] Multidimensional branching random walks in random environment
    Comets, Francis
    Popov, Serguei
    ANNALS OF PROBABILITY, 2007, 35 (01): : 68 - 114
  • [37] Random walks in a strongly sparse random environment
    Buraczewski, Dariusz
    Dyszewski, Piotr
    Iksanov, Alexander
    Marynych, Alexander
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (07) : 3990 - 4027
  • [38] EINSTEIN RELATION FOR RANDOM WALKS IN RANDOM ENVIRONMENT
    Guo, Xiaoqin
    ANNALS OF PROBABILITY, 2016, 44 (01): : 324 - 359
  • [39] Random walks in a moderately sparse random environment
    Buraczewski, Dariusz
    Dyszewski, Piotr
    Iksanov, Alexander
    Marynych, Alexander
    Roitershtein, Alexander
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24 : 1 - 44
  • [40] Localization for branching random walks in random environment
    Hu, Yueyun
    Yoshida, Nobuo
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (05) : 1632 - 1651