Random walks in random Dirichlet environment are transient in dimension d ≥ 3

被引:0
|
作者
Christophe Sabot
机构
[1] Université de Lyon,CNRS UMR5208, Institut Camille Jordan
[2] Université Lyon 1,undefined
来源
关键词
Random walk in random environment; Dirichlet distribution; Reinforced random walks; Max-Flow Min-Cut theorem; Primary 60K37; 60K35; Secondary 5C20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider random walks in random Dirichlet environment (RWDE) which is a special type of random walks in random environment where the exit probabilities at each site are i.i.d. Dirichlet random variables. On \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}^d}$$\end{document}, RWDE are parameterized by a 2d-uplet of positive reals. We prove that for all values of the parameters, RWDE are transient in dimension d ≥ 3. We also prove that the Green function has some finite moments and we characterize the finite moments. Our result is more general and applies for example to finitely generated symmetric transient Cayley graphs. In terms of reinforced random walks it implies that directed edge reinforced random walks are transient for d ≥ 3.
引用
收藏
页码:297 / 317
页数:20
相关论文
共 50 条
  • [21] Random walks in random hypergeometric environment
    Orenshtein, Tal
    Sabot, Christophe
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25 : 1 - 21
  • [22] ON THE RANGE OF RANDOM WALKS IN RANDOM ENVIRONMENT
    ZHOU XIANYIN(Department of Mathematics
    Chinese Annals of Mathematics, 1995, (01) : 131 - 138
  • [23] RANDOM-WALKS IN A RANDOM ENVIRONMENT
    SOLOMON, F
    ANNALS OF PROBABILITY, 1975, 3 (01): : 1 - 31
  • [24] Random walks in a sparse random environment
    Matzavinos, Anastasios
    Roitershtein, Alexander
    Seol, Youngsoo
    ELECTRONIC JOURNAL OF PROBABILITY, 2016, 21
  • [25] Random walks in a random (fluctuating) environment
    Boldrighini, K.
    Minlos, R. A.
    Pellegrinotti, A.
    RUSSIAN MATHEMATICAL SURVEYS, 2007, 62 (04) : 663 - 712
  • [26] Regularity of biased 1D random walks in random environment
    Faggionato, Alessandra
    Salvi, Michele
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2019, 16 (02): : 1213 - 1248
  • [27] The simplest random walks for the Dirichlet problem
    Milstein, GN
    Tretyakov, MV
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2002, 47 (01) : 53 - 68
  • [28] Large deviations for transient random walks in random environment on a Galton-Watson tree
    Aidekon, Elie
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (01): : 159 - 189
  • [29] On the recurrence of unidimensional random walks in a random environment
    Derriennic, Y
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (01): : 65 - 70
  • [30] On the recurrence of some random walks in random environment
    Gantert, Nina
    Kochler, Michael
    Pene, Francoise
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2014, 11 (02): : 483 - 502