Survival of Branching Random Walks in Random Environment

被引:21
|
作者
Gantert, Nina [2 ,3 ]
Mueller, Sebastian [4 ]
Popov, Serguei [1 ]
Vachkovskaia, Marina [1 ]
机构
[1] Univ Estadual Campinas, Inst Math Stat & Sci Computat, Dept Stat, BR-13083970 Campinas, SP, Brazil
[2] CeNos Ctr Nonlinear Sci, Fachbereich Math & Informat, D-48149 Munster, Germany
[3] Inst Stat Math, D-48149 Munster, Germany
[4] Graz Univ Technol, Inst Math Strukturtheorie, A-8010 Graz, Austria
基金
巴西圣保罗研究基金会;
关键词
Local extinction; Global extinction; Random matrices; Lyapunov exponent; LIMIT-THEOREMS; MATRICES; TREES;
D O I
10.1007/s10959-009-0227-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study survival of nearest-neighbor branching random walks in random environment (BRWRE) on Z. A priori there are three different regimes of survival: global survival, local survival, and strong local survival. We show that local and strong local survival regimes coincide for BRWRE and that they can be characterized with the spectral radius of the first moment matrix of the process. These results are generalizations of the classification of BRWRE in recurrent and transient regimes. Our main result is a characterization of global survival that is given in terms of Lyapunov exponents of an infinite product of i.i.d. 2x2 random matrices.
引用
收藏
页码:1002 / 1014
页数:13
相关论文
共 50 条
  • [1] Survival of Branching Random Walks in Random Environment
    Nina Gantert
    Sebastian Müller
    Serguei Popov
    Marina Vachkovskaia
    [J]. Journal of Theoretical Probability, 2010, 23 : 1002 - 1014
  • [2] Multidimensional branching random walks in random environment
    Comets, Francis
    Popov, Serguei
    [J]. ANNALS OF PROBABILITY, 2007, 35 (01): : 68 - 114
  • [3] Localization for branching random walks in random environment
    Hu, Yueyun
    Yoshida, Nobuo
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (05) : 1632 - 1651
  • [4] Global survival of branching random walks and tree-like branching random walks
    Bertacchi, Daniela
    Coletti, Cristian F.
    Zucca, Fabio
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2017, 14 (01): : 381 - 402
  • [5] Moment asymptotics for branching random walks in random environment
    Guen, Onur
    Koenig, Wolfgang
    Sekulovic, Ozren
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18
  • [6] The speed of a branching system of random walks in random environment
    Devulder, Alexis
    [J]. STATISTICS & PROBABILITY LETTERS, 2007, 77 (18) : 1712 - 1721
  • [7] A REMARK ON LOCALIZATION FOR BRANCHING RANDOM WALKS IN RANDOM ENVIRONMENT
    Heil, Hadrian
    Nakashima, Makoto
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 323 - 336
  • [8] Minimal Position of Branching Random Walks in Random Environment
    Makoto Nakashima
    [J]. Journal of Theoretical Probability, 2013, 26 : 1181 - 1217
  • [9] Minimal Position of Branching Random Walks in Random Environment
    Nakashima, Makoto
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2013, 26 (04) : 1181 - 1217
  • [10] Survival of branching random walks with absorption
    Aidekon, Elie
    Jaffuel, Bruno
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (09) : 1901 - 1937