Survival of Branching Random Walks in Random Environment

被引:21
|
作者
Gantert, Nina [2 ,3 ]
Mueller, Sebastian [4 ]
Popov, Serguei [1 ]
Vachkovskaia, Marina [1 ]
机构
[1] Univ Estadual Campinas, Inst Math Stat & Sci Computat, Dept Stat, BR-13083970 Campinas, SP, Brazil
[2] CeNos Ctr Nonlinear Sci, Fachbereich Math & Informat, D-48149 Munster, Germany
[3] Inst Stat Math, D-48149 Munster, Germany
[4] Graz Univ Technol, Inst Math Strukturtheorie, A-8010 Graz, Austria
基金
巴西圣保罗研究基金会;
关键词
Local extinction; Global extinction; Random matrices; Lyapunov exponent; LIMIT-THEOREMS; MATRICES; TREES;
D O I
10.1007/s10959-009-0227-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study survival of nearest-neighbor branching random walks in random environment (BRWRE) on Z. A priori there are three different regimes of survival: global survival, local survival, and strong local survival. We show that local and strong local survival regimes coincide for BRWRE and that they can be characterized with the spectral radius of the first moment matrix of the process. These results are generalizations of the classification of BRWRE in recurrent and transient regimes. Our main result is a characterization of global survival that is given in terms of Lyapunov exponents of an infinite product of i.i.d. 2x2 random matrices.
引用
收藏
页码:1002 / 1014
页数:13
相关论文
共 50 条
  • [21] Survival asymptotics for branching random walks in IID environments
    Englander, Janos
    Peres, Yuval
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2017, 22
  • [22] STRONG LOCAL SURVIVAL OF BRANCHING RANDOM WALKS IS NOT MONOTONE
    Bertacchi, Daniela
    Zucca, Fabio
    [J]. ADVANCES IN APPLIED PROBABILITY, 2014, 46 (02) : 400 - 421
  • [23] Random Walks and Branching Processes in Correlated Gaussian Environment
    Frank Aurzada
    Alexis Devulder
    Nadine Guillotin-Plantard
    Françoise Pène
    [J]. Journal of Statistical Physics, 2017, 166 : 1 - 23
  • [24] Random Walks and Branching Processes in Correlated Gaussian Environment
    Aurzada, Frank
    Devulder, Alexis
    Guillotin-Plantard, Nadine
    Pene, Francoise
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2017, 166 (01) : 1 - 23
  • [25] ALMOST SURE CENTRAL LIMIT THEOREM FOR BRANCHING RANDOM WALKS IN RANDOM ENVIRONMENT
    Nakashima, Makoto
    [J]. ANNALS OF APPLIED PROBABILITY, 2011, 21 (01): : 351 - 373
  • [26] Random walks in a random environment
    Varadhan, SRS
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2004, 114 (04): : 309 - 318
  • [27] Branching random walks with random environments in time
    Chunmao Huang
    Xingang Liang
    Quansheng Liu
    [J]. Frontiers of Mathematics in China, 2014, 9 : 835 - 842
  • [28] Random walks in a random environment
    S. R. S. Varadhan
    [J]. Proceedings Mathematical Sciences, 2004, 114 : 309 - 318
  • [29] Branching random walks with random environments in time
    Huang, Chunmao
    Liang, Xingang
    Liu, Quansheng
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2014, 9 (04) : 835 - 842
  • [30] Branching Random Walks and Martingales
    Shi, Zhan
    [J]. BRANCHING RANDOM WALKS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLII - 2012, 2015, 2151 : 19 - 28