Manipulation and coherence of ultra-cold atoms on a superconducting atom chip

被引:0
|
作者
Simon Bernon
Helge Hattermann
Daniel Bothner
Martin Knufinke
Patrizia Weiss
Florian Jessen
Daniel Cano
Matthias Kemmler
Reinhold Kleiner
Dieter Koelle
József Fortágh
机构
[1] CQ Center for Collective Quantum Phenomena and their Applications in LISA+,
[2] Physikalisches Institut,undefined
[3] Eberhard-Karls-Universität Tübingen,undefined
[4] Present address: Quantronics Group,undefined
[5] SPEC (CNRS URA 2464),undefined
[6] IRAMIS,undefined
[7] DSM,undefined
[8] CEA-Saclay,undefined
[9] 91191 Gif-sur-Yvette,undefined
[10] France,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The coherence of quantum systems is crucial to quantum information processing. Although superconducting qubits can process quantum information at microelectronics rates, it remains a challenge to preserve the coherence and therefore the quantum character of the information in these systems. An alternative is to share the tasks between different quantum platforms, for example, cold atoms storing the quantum information processed by superconducting circuits. Here we characterize the coherence of superposition states of 87Rb atoms magnetically trapped on a superconducting atom chip. We load atoms into a persistent-current trap engineered next to a coplanar microwave resonator structure, and observe that the coherence of hyperfine ground states is preserved for several seconds. We show that large ensembles of a million of thermal atoms below 350 nK temperature and pure Bose–Einstein condensates with 3.5 × 105 atoms can be prepared and manipulated at the superconducting interface. This opens the path towards the rich dynamics of strong collective coupling regimes.
引用
收藏
相关论文
共 50 条
  • [21] Vacuum entanglement probes for ultra-cold atom systems
    Gooding, Cisco
    Sachs, Allison
    Mann, Robert B
    Weinfurtner, Silke
    New Journal of Physics, 2024, 26 (10)
  • [22] Improvement by laser quenching of an 'atom diode': a one-way barrier for ultra-cold atoms
    Ruschhaupt, A
    Muga, JG
    Raizen, MG
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2006, 39 (06) : L133 - L138
  • [23] Surface-atom force out of thermal equilibrium and its effect on ultra-cold atoms
    Antezza, Mauro
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (21): : 6117 - 6126
  • [24] Polarization in collisions between ultra-cold sodium atoms
    Heideman, HGM
    van der Straten, P
    Amelink, A
    CORRELATIONS, POLARIZATION, AND IONIZATION IN ATOMIC SYSTEMS, 2002, 604 : 217 - 222
  • [25] Atom loss maximum in ultra-cold Fermi gases
    Zhang, Shizhong
    Ho, Tin-Lun
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [26] Nanometric Surface Probing through Ultra-Cold Atoms
    Khan, Murtaza Ali
    Schaefer, Florian
    Pernice, Wolfram H. P.
    Cataliotti, Francesco S.
    NONLINEAR OPTICS AND ITS APPLICATIONS VIII; AND QUANTUM OPTICS III, 2014, 9136
  • [27] ULTRA-COLD HE-4 ATOM BEAMS
    MULDERS, N
    WYATT, AFG
    PHYSICA B, 1994, 194 : 539 - 540
  • [28] Stückelberg-interferometry with ultra-cold atoms
    P. Plötz
    S. Wimberger
    The European Physical Journal D, 2011, 65 : 199 - 205
  • [29] Dynamic atom optics to produce ultra-slow, ultra-cold helium atoms: Design study and possible applications
    Doak, RB
    Kevern, K
    Chizmeshya, A
    David, R
    Comsa, G
    ATOM OPTICS, 1997, 2995 : 146 - 155
  • [30] Magnetic excitation of ultra-cold atoms trapped in optical lattice
    Zhao Xing-Dong
    Zhang Ying-Ying
    Liu Wu-Ming
    ACTA PHYSICA SINICA, 2019, 68 (04)