Manipulation and coherence of ultra-cold atoms on a superconducting atom chip

被引:0
|
作者
Simon Bernon
Helge Hattermann
Daniel Bothner
Martin Knufinke
Patrizia Weiss
Florian Jessen
Daniel Cano
Matthias Kemmler
Reinhold Kleiner
Dieter Koelle
József Fortágh
机构
[1] CQ Center for Collective Quantum Phenomena and their Applications in LISA+,
[2] Physikalisches Institut,undefined
[3] Eberhard-Karls-Universität Tübingen,undefined
[4] Present address: Quantronics Group,undefined
[5] SPEC (CNRS URA 2464),undefined
[6] IRAMIS,undefined
[7] DSM,undefined
[8] CEA-Saclay,undefined
[9] 91191 Gif-sur-Yvette,undefined
[10] France,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The coherence of quantum systems is crucial to quantum information processing. Although superconducting qubits can process quantum information at microelectronics rates, it remains a challenge to preserve the coherence and therefore the quantum character of the information in these systems. An alternative is to share the tasks between different quantum platforms, for example, cold atoms storing the quantum information processed by superconducting circuits. Here we characterize the coherence of superposition states of 87Rb atoms magnetically trapped on a superconducting atom chip. We load atoms into a persistent-current trap engineered next to a coplanar microwave resonator structure, and observe that the coherence of hyperfine ground states is preserved for several seconds. We show that large ensembles of a million of thermal atoms below 350 nK temperature and pure Bose–Einstein condensates with 3.5 × 105 atoms can be prepared and manipulated at the superconducting interface. This opens the path towards the rich dynamics of strong collective coupling regimes.
引用
收藏
相关论文
共 50 条
  • [11] Improve the performance of interferometer with ultra-cold atoms
    董翔宇
    金圣杰
    税鸿冕
    彭鹏
    周小计
    Chinese Physics B, 2021, 30 (01) : 58 - 71
  • [12] Studies of Weak Interactions with Ultra-Cold Atoms
    Ejnisman, R.
    Rudy, P.
    Bigelow, N. P.
    Cardona, P. S. P.
    Tuboy, A. M.
    Milori, D. M. B. P.
    Bagnato, V. S.
    Goldman, I. D.
    BRAZILIAN JOURNAL OF PHYSICS, 1997, 27 (02) : 247 - 259
  • [13] Stuckelberg-interferometry with ultra-cold atoms
    Ploetz, P.
    Wimberger, S.
    EUROPEAN PHYSICAL JOURNAL D, 2011, 65 (1-2): : 199 - 205
  • [14] Improve the performance of interferometer with ultra-cold atoms
    Dong, Xiangyu
    Jin, Shengjie
    Shui, Hongmian
    Peng, Peng
    Zhou, Xiaoji
    CHINESE PHYSICS B, 2021, 30 (01)
  • [15] The transformation of ultra-cold Rydberg atom to plasma
    Zhao Jian-Ming
    Zhang Lin-Jie
    Li Chang-Yong
    Jia Suo-Tang
    ACTA PHYSICA SINICA, 2008, 57 (05) : 2895 - 2898
  • [16] Transformation of ultra-cold Rydberg atom to plasma
    State Key Laboratory of Quantum Optics and Quantum Optics Devices, College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China
    Wuli Xuebao, 2008, 5 (2895-2898):
  • [17] Application of lasers to ultra-cold atoms and molecules
    Perrin, Helene
    Lemonde, Pierre
    dos Santos, Franck Pereira
    Josse, Vincent
    Tolra, Bruno Laburthe
    Chevy, Frederic
    Comparat, Daniel
    COMPTES RENDUS PHYSIQUE, 2011, 12 (04) : 417 - 432
  • [18] An atom chip for the manipulation of ultracold atoms
    Cherry, O.
    Carter, J. D.
    Martin, J. D. D.
    CANADIAN JOURNAL OF PHYSICS, 2009, 87 (06) : 633 - 638
  • [19] An optical frequency standard with cold and ultra-cold calcium atoms
    Riehle, F
    Degenhardt, C
    Lisdat, C
    Wilpers, G
    Schnatz, H
    Binnewies, T
    Stoehr, H
    Sterr, U
    ASTROPHYSICS, CLOCKS AND FUNDAMENTAL CONSTANTS, 2004, 648 : 229 - 244
  • [20] Atom-diatom collisions at cold and ultra-cold temperatures
    Colavecchia, F. D.
    Parker, G. A.
    Pack, R. T.
    Photonic, Electronic and Atomic Collisions, 2006, : 486 - 493