Vacuum entanglement probes for ultra-cold atom systems

被引:0
|
作者
Gooding, Cisco [1 ]
Sachs, Allison [2 ]
Mann, Robert B [2 ,3 ]
Weinfurtner, Silke [1 ,4 ]
机构
[1] School of Mathematical Sciences, University of Nottingham, University Park, Nottingham,NG7 2RD, United Kingdom
[2] Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
[3] Perimeter Institute for Theoretical Physics, Waterloo, Canada
[4] Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham,NG7 2RD, United Kingdom
基金
英国科研创新办公室; 英国科学技术设施理事会; 加拿大自然科学与工程研究理事会;
关键词
Bose-Einstein condensation - Particle optics - Photons - Quantum entanglement - Quantum optics - Statistical mechanics;
D O I
10.1088/1367-2630/ad8675
中图分类号
学科分类号
摘要
This study explores the transfer of nonclassical correlations from an ultra-cold atom system to a pair of pulsed laser beams. Through nondestructive local probe measurements, we introduce an alternative to destructive techniques for mapping Bose-Einstein Condensate (BEC) entanglement. Operating at ultra-low temperatures, BEC density fluctuations emulate a relativistic vacuum field. We show that lasers can serve as Unruh-DeWitt detectors for vacuum BEC phonons. A quantum vacuum holds intrinsic entanglement, transferable to distant probes briefly interacting with it—a phenomenon termed ‘entanglement harvesting’. Our study accomplishes two primary objectives: first, establishing a mathematical connection between a pair of pulsed laser probes interacting with an effective relativistic field and the entanglement harvesting protocol; and second, to closely examine the potential and persisting obstacles for realising this protocol in an ultra-cold atom experiment. © 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.
引用
收藏
相关论文
共 50 条
  • [1] Atom interferometry with ultra-cold atoms
    Kasevich, M
    BOSE-EINSTEIN CONDENSATES AND ATOM LASERS, 2000, : 231 - 247
  • [2] The transformation of ultra-cold Rydberg atom to plasma
    Zhao Jian-Ming
    Zhang Lin-Jie
    Li Chang-Yong
    Jia Suo-Tang
    ACTA PHYSICA SINICA, 2008, 57 (05) : 2895 - 2898
  • [3] Transformation of ultra-cold Rydberg atom to plasma
    State Key Laboratory of Quantum Optics and Quantum Optics Devices, College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China
    Wuli Xuebao, 2008, 5 (2895-2898):
  • [4] Atom-diatom collisions at cold and ultra-cold temperatures
    Colavecchia, F. D.
    Parker, G. A.
    Pack, R. T.
    Photonic, Electronic and Atomic Collisions, 2006, : 486 - 493
  • [5] Atom loss maximum in ultra-cold Fermi gases
    Zhang, Shizhong
    Ho, Tin-Lun
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [6] ULTRA-COLD HE-4 ATOM BEAMS
    MULDERS, N
    WYATT, AFG
    PHYSICA B, 1994, 194 : 539 - 540
  • [7] Fate of the false vacuum: Towards realization with ultra-cold atoms
    Fialko, O.
    Opanchuk, B.
    Sidorov, A. I.
    Drummond, P. D.
    Brand, J.
    EPL, 2015, 110 (05)
  • [8] Manipulation and coherence of ultra-cold atoms on a superconducting atom chip
    Bernon, Simon
    Hattermann, Helge
    Bothner, Daniel
    Knufinke, Martin
    Weiss, Patrizia
    Jessen, Florian
    Cano, Daniel
    Kemmler, Matthias
    Kleiner, Reinhold
    Koelle, Dieter
    Fortagh, Jozsef
    NATURE COMMUNICATIONS, 2013, 4
  • [9] Manipulation and coherence of ultra-cold atoms on a superconducting atom chip
    Simon Bernon
    Helge Hattermann
    Daniel Bothner
    Martin Knufinke
    Patrizia Weiss
    Florian Jessen
    Daniel Cano
    Matthias Kemmler
    Reinhold Kleiner
    Dieter Koelle
    József Fortágh
    Nature Communications, 4
  • [10] Ultra-cold single-atom quantum heat engines
    Barontini, Giovanni
    Paternostro, Mauro
    NEW JOURNAL OF PHYSICS, 2019, 21 (06)