Manipulation and coherence of ultra-cold atoms on a superconducting atom chip

被引:0
|
作者
Simon Bernon
Helge Hattermann
Daniel Bothner
Martin Knufinke
Patrizia Weiss
Florian Jessen
Daniel Cano
Matthias Kemmler
Reinhold Kleiner
Dieter Koelle
József Fortágh
机构
[1] CQ Center for Collective Quantum Phenomena and their Applications in LISA+,
[2] Physikalisches Institut,undefined
[3] Eberhard-Karls-Universität Tübingen,undefined
[4] Present address: Quantronics Group,undefined
[5] SPEC (CNRS URA 2464),undefined
[6] IRAMIS,undefined
[7] DSM,undefined
[8] CEA-Saclay,undefined
[9] 91191 Gif-sur-Yvette,undefined
[10] France,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The coherence of quantum systems is crucial to quantum information processing. Although superconducting qubits can process quantum information at microelectronics rates, it remains a challenge to preserve the coherence and therefore the quantum character of the information in these systems. An alternative is to share the tasks between different quantum platforms, for example, cold atoms storing the quantum information processed by superconducting circuits. Here we characterize the coherence of superposition states of 87Rb atoms magnetically trapped on a superconducting atom chip. We load atoms into a persistent-current trap engineered next to a coplanar microwave resonator structure, and observe that the coherence of hyperfine ground states is preserved for several seconds. We show that large ensembles of a million of thermal atoms below 350 nK temperature and pure Bose–Einstein condensates with 3.5 × 105 atoms can be prepared and manipulated at the superconducting interface. This opens the path towards the rich dynamics of strong collective coupling regimes.
引用
收藏
相关论文
共 50 条
  • [1] Manipulation and coherence of ultra-cold atoms on a superconducting atom chip
    Bernon, Simon
    Hattermann, Helge
    Bothner, Daniel
    Knufinke, Martin
    Weiss, Patrizia
    Jessen, Florian
    Cano, Daniel
    Kemmler, Matthias
    Kleiner, Reinhold
    Koelle, Dieter
    Fortagh, Jozsef
    NATURE COMMUNICATIONS, 2013, 4
  • [2] Atom interferometry with ultra-cold atoms
    Kasevich, M
    BOSE-EINSTEIN CONDENSATES AND ATOM LASERS, 2000, : 231 - 247
  • [3] A TRAP FOR ULTRA-COLD ATOMS
    GIACOBINO, E
    RECHERCHE, 1991, 22 (229): : 254 - 255
  • [4] The space atom laser: an isotropic source for ultra-cold atoms in microgravity
    Meister, Matthias
    Roura, Albert
    Rasel, Ernst M.
    Schleich, Wolfgang P.
    NEW JOURNAL OF PHYSICS, 2019, 21 (01)
  • [5] Effects related to the temperature of atoms in an atom interferometry gravimeter based on ultra-cold atoms
    Zhang, Heng
    Ren, Xudong
    Yan, Wenhua
    Cheng, Yuan
    Zhou, Hang
    Gao, Zhi
    Luo, Qin
    Zhou, Minkang
    Hu, Zhongkun
    OPTICS EXPRESS, 2021, 29 (19) : 30007 - 30019
  • [6] A quantum trampoline for ultra-cold atoms
    Robert-de-Saint-Vincent, M.
    Brantut, J. -P.
    Borde, Ch. J.
    Aspect, A.
    Bourdel, T.
    Bouyer, P.
    EPL, 2010, 89 (01)
  • [7] Hamiltonian Ratchets with Ultra-Cold Atoms
    Ni, Jiating
    Dadras, Siamak
    Lam, Wa Kun
    Shrestha, Rajendra K.
    Sadgrove, Mark
    Wimberger, Sandro
    Summy, Gil S.
    ANNALEN DER PHYSIK, 2017, 529 (08)
  • [8] Coherent manipulation of cold Rydberg atoms near the surface of an atom chip
    Carter, J. D.
    Martin, J. D. D.
    PHYSICAL REVIEW A, 2013, 88 (04):
  • [9] Dark optical traps for ultra-cold atoms
    Davidson, N
    OPTICS FOR THE QUALITY OF LIFE, PTS 1 AND 2, 2003, 4829 : 481 - 482
  • [10] Trapping Ultra-cold Atoms in Optical Lattices
    Fersterer, Petra
    Taylor, Lynn
    JUNCTURES-THE JOURNAL FOR THEMATIC DIALOGUE, 2015, (16): : 32 - 40