Correction to: Early Colorectal Cancer Detected by Machine Learning Model Using Gender, Age, and Complete Blood Count Data

被引:0
|
作者
Mark C. Hornbrook
Ran Goshen
Eran Choman
Maureen O’Keeffe-Rosetti
Yaron Kinar
Elizabeth G. Liles
Kristal C. Rust
机构
[1] Kaiser Permanente Center for Health Research,Kaiser Sunnyside Medical Center
[2] Medial EarlySign Inc.,undefined
[3] Medial Research,undefined
[4] Inc.,undefined
[5] LL Nursing Administration,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The article Early Colorectal Cancer Detected by Machine Learning Model Using Gender, Age, and Complete Blood Count Data, written by Mark C. Hornbrook, Ran Goshen, Eran Choman, Maureen O’Keeffe-Rosetti, Yaron Kinar, Elizabeth G. Liles, and Kristal C. Rust, was originally published Online First without open access
引用
收藏
页码:270 / 270
相关论文
共 50 条
  • [31] Machine Learning for Early Lung Cancer Identification Using Routine Clinical and Laboratory Data
    Gould, Michael K.
    Huang, Brian Z.
    Tammemagi, Martin C.
    Kinar, Yaron
    Shiff, Ron
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2021, 204 (04) : 445 - 453
  • [32] A novel deep learning pipeline for early detection of colorectal cancer and colorectal adenoma using gut microbiome data
    Liao, Nai-Shun
    Hung, Yuan-Mao
    Tsai, Yi-Jian
    Nam Nhut Phan
    Chen, Pei-Chun
    Lai, Liang-Chuan
    Tsai, Mong-Hsun
    Lu, Tzu-Pin
    Chuang, Eric Y.
    CANCER RESEARCH, 2023, 83 (07)
  • [33] Complete Blood Count Parameters Outperform Putative Inflammatory Markers in Predicting COVID-19 Mortality: A Multimodal Machine Learning Model
    Idogun, Precious
    Sia, John
    Ward, Mindy
    Patel, Dillan
    Wiese-Rometsch, Wilhelmine
    Patel, Anjan J.
    BLOOD, 2021, 138
  • [34] Correction to: Predicting pathologic complete response in locally advanced rectal cancer patients after neoadjuvant therapy: a machine learning model using XGBoost
    Xijie Chen
    Wenhui Wang
    Junguo Chen
    Liang Xu
    Xiaosheng He
    Ping Lan
    Jiancong Hu
    Lei Lian
    International Journal of Colorectal Disease, 2022, 37 : 1919 - 1919
  • [35] An enrichment model using regular health examination data for early detection of colorectal cancer
    Shi, Qiang
    Gao, Zhaoya
    Wu, Pengze
    Heng, Fanxiu
    Lei, Fuming
    Wang, Yanzhao
    Gao, Qingkun
    Zeng, Qingmin
    Niu, Pengfei
    Li, Cheng
    Gu, Jin
    CHINESE JOURNAL OF CANCER RESEARCH, 2019, 31 (04) : 686 - +
  • [36] An enrichment model using regular health examination data for early detection of colorectal cancer
    Qiang Shi
    Zhaoya Gao
    Pengze Wu
    Fanxiu Heng
    Fuming Lei
    Yanzhao Wang
    Qingkun Gao
    Qingmin Zeng
    Pengfei Niu
    Cheng Li
    Jin Gu
    ChineseJournalofCancerResearch, 2019, 31 (04) : 686 - 698
  • [37] Prediction of early-onset colorectal cancer mortality rates in the United States using machine learning
    Ali, Hassam
    Patel, Pratik
    Dahiya, Dushyant Singh
    Gangwani, Manesh Kumar
    Basuli, Debargha
    Mohan, Babu Pappu
    CANCER MEDICINE, 2024, 13 (01):
  • [38] Exploring Phenotypes for Disease Resilience in Pigs Using Complete Blood Count Data From a Natural Disease Challenge Model
    Bai, Xuechun
    Putz, Austin M.
    Wang, Zhiquan
    Fortin, Frdric
    Harding, John C. S.
    Dyck, Michael K.
    Dekkers, Jack C. M.
    Field, Catherine J.
    Plastow, Graham S.
    FRONTIERS IN GENETICS, 2020, 11
  • [39] Identification of Idiopathic Pulmonary Fibrosis and Prediction of Disease Severity via Machine Learning Analysis of Comprehensive Metabolic Panel and Complete Blood Count Data
    Mueller, Alex N.
    Miller, Hunter A.
    Taylor, Matthew J.
    Suliman, Sally A.
    Frieboes, Hermann B.
    LUNG, 2024, 202 (02) : 139 - 150
  • [40] Identification of Idiopathic Pulmonary Fibrosis and Prediction of Disease Severity via Machine Learning Analysis of Comprehensive Metabolic Panel and Complete Blood Count Data
    Alex N. Mueller
    Hunter A. Miller
    Matthew J. Taylor
    Sally A. Suliman
    Hermann B. Frieboes
    Lung, 2024, 202 : 139 - 150