Correction to: Early Colorectal Cancer Detected by Machine Learning Model Using Gender, Age, and Complete Blood Count Data

被引:0
|
作者
Mark C. Hornbrook
Ran Goshen
Eran Choman
Maureen O’Keeffe-Rosetti
Yaron Kinar
Elizabeth G. Liles
Kristal C. Rust
机构
[1] Kaiser Permanente Center for Health Research,Kaiser Sunnyside Medical Center
[2] Medial EarlySign Inc.,undefined
[3] Medial Research,undefined
[4] Inc.,undefined
[5] LL Nursing Administration,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The article Early Colorectal Cancer Detected by Machine Learning Model Using Gender, Age, and Complete Blood Count Data, written by Mark C. Hornbrook, Ran Goshen, Eran Choman, Maureen O’Keeffe-Rosetti, Yaron Kinar, Elizabeth G. Liles, and Kristal C. Rust, was originally published Online First without open access
引用
收藏
页码:270 / 270
相关论文
共 50 条
  • [21] Prediction of early colorectal cancer metastasis by machine learning using digital slide images
    Takamatsu, Manabu
    Yamamoto, Noriko
    Kawachi, Hiroshi
    Chino, Akiko
    Saito, Shoichi
    Ueno, Masashi
    Ishikawa, Yuichi
    Takazawa, Yutaka
    Takeuchi, Kengo
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2019, 178 : 155 - 161
  • [22] Utility of machine learning in developing a predictive model for early-age-onset colorectal neoplasia using electronic health records
    Hussan, Hisham
    Zhao, Jing
    Badu-Tawiah, Abraham K.
    Stanich, Peter
    Tabung, Fred
    Gray, Darrell
    Ma, Qin
    Kalady, Matthew
    Clinton, Steven K.
    PLOS ONE, 2022, 17 (03):
  • [23] Complete blood count and C-reactive protein to predict positive blood culture among neonates using machine learning algorithms
    Matsushita, Felipe Yu
    Krebs, Vera Lucia Jornada
    de Carvalho, Werther Brunow
    CLINICS, 2023, 78
  • [24] Machine learning-based colorectal cancer prediction using global dietary data
    Abdul Rahman, Hanif
    Ottom, Mohammad Ashraf
    Dinov, Ivo D.
    BMC CANCER, 2023, 23 (01)
  • [25] Machine learning-based colorectal cancer prediction using global dietary data
    Hanif Abdul Rahman
    Mohammad Ashraf Ottom
    Ivo D. Dinov
    BMC Cancer, 23
  • [26] INTERPRETABLE MACHINE LEARNING PREDICTIVE MODEL TO UNDERSTAND RISK FACTORS FOR EARLY ONSET COLORECTAL CANCER
    Kalgotra, Pankush
    Sharda, Ramesh
    Caruana, Rich
    Parasa, Sravanthi
    GASTROENTEROLOGY, 2024, 166 (05) : S178 - S178
  • [27] Combining ultrasound radiomics, complete blood count, and serum biochemical biomarkers for diagnosing intestinal disorders in cats using machine learning
    Basran, Parminder S.
    Shcherban, Natalya
    Forman, Marnin
    Chang, Jasmine
    Nelissen, Sophie
    Recchia, Benjamin K.
    Porter, Ian R.
    VETERINARY RADIOLOGY & ULTRASOUND, 2023, 64 (05) : 890 - 903
  • [28] Development and Validation of a User-Friendly Predictive Model Using Demographic and Complete Blood Count Data to Facilitate Early Diagnosis on Suspicion of Myeloproliferative Neoplasms
    Jin, Lilan
    Li, Lei
    Lu, Yiyi
    Cai, Gang
    Lin, Lin
    Lin, Jiafei
    INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, 2025,
  • [29] Simulation of colorectal cancer clinical trials using real-world data and machine learning
    Chen, Zhaoyi
    Zhang, Hansi
    George, Thomas
    Prosperi, Mattia
    Guo, Yi
    Braithwaite, Dejana
    Shenkman, Elizabeth
    Licht, Jonathan
    Bian, Jiang
    CLINICAL CANCER RESEARCH, 2021, 27 (05)
  • [30] Prediction of colorectal cancer chemotherapy efficacy using machine learning applied to gene expression data
    Jafri, Mohsin Saleet
    Amniouel, Soukaina
    JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (16)