Identification of Idiopathic Pulmonary Fibrosis and Prediction of Disease Severity via Machine Learning Analysis of Comprehensive Metabolic Panel and Complete Blood Count Data

被引:0
|
作者
Alex N. Mueller
Hunter A. Miller
Matthew J. Taylor
Sally A. Suliman
Hermann B. Frieboes
机构
[1] University of Louisville,School of Medicine
[2] University of Louisville,Department of Bioengineering
[3] University of Louisville,Division of Pulmonary Medicine
[4] University of Arizona Medical Center Phoenix,Formerly at: Division of Pulmonary Medicine
[5] University of Louisville,Department of Pharmacology/Toxicology
[6] University of Louisville,James Graham Brown Cancer Center
[7] University of Louisville,Center for Predictive Medicine
[8] University of Louisville,undefined
来源
Lung | 2024年 / 202卷
关键词
Interstitial lung disease; Idiopathic pulmonary fibrosis; Connective tissue disease; Machine learning; Pulmonary function testing;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:139 / 150
页数:11
相关论文
共 9 条
  • [1] Identification of Idiopathic Pulmonary Fibrosis and Prediction of Disease Severity via Machine Learning Analysis of Comprehensive Metabolic Panel and Complete Blood Count Data
    Mueller, Alex N.
    Miller, Hunter A.
    Taylor, Matthew J.
    Suliman, Sally A.
    Frieboes, Hermann B.
    LUNG, 2024, 202 (02) : 139 - 150
  • [2] Machine Learning-Based Prediction of Hemoglobinopathies Using Complete Blood Count Data
    Schipper, Anoeska
    Rutten, Matthieu
    van Gammeren, Adriaan
    Harteveld, Cornelis L.
    Urrechaga, Eloisa
    Weerkamp, Floor
    den Besten, Gijs
    Krabbe, Johannes
    Slomp, Jennichjen
    Schoonen, Lise
    Broeren, Maarten
    van Wijnen, Merel
    Huijskens, Mirelle J. A. J.
    Koopmann, Tamara
    van Ginneken, Bram
    Kusters, Ron
    Kurstjens, Steef
    CLINICAL CHEMISTRY, 2024, 70 (08) : 1064 - 1075
  • [3] Identification of PANoptosis-related genes for idiopathic pulmonary fibrosis by machine learning and molecular subtype analysis
    Wu, Li
    Liu, Yang
    Zhang, Yifan
    Xu, Rui
    Bi, Kaixin
    Li, Jing
    Wang, Jia
    Liu, Yabing
    Guo, Wanjin
    Wang, Qi
    Chen, Zhiqiang
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [4] Prediction of ICU admission for COVID-19 patients: a Machine Learning approach based on Complete Blood Count data
    Famiglini, Lorenzo
    Bini, Giorgio
    Carobene, Anna
    Campagner, Andrea
    Cabitza, Federico
    2021 IEEE 34TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2021, : 160 - 165
  • [5] The Analysis of Proteomics by Machine Learning in Separating Idiopathic Pulmonary Fibrosis from Connective Tissue Disease-Interstitial Lung Disease
    Moodley, Yuben
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2024, 210 (04) : 378 - 380
  • [6] Prediction of Disease Type and Severity in Interstitial Lung Disease Via Machine Learning Analysis of Exhaled Volatile Organic Compounds
    Suliman, S. A.
    Taylor, M.
    Miller, H.
    Frieboes, H.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2024, 209
  • [7] Classification of Patients With Idiopathic Pulmonary Fibrosis According to Blood Biomarker Signatures by Consensus Cluster Analysis: A Multiple Machine Learning Approach
    Fainberg, H.
    Moodley, Y. P.
    Triguero, I.
    Corte, T.
    Sand, J. M.
    Leeming, D. J.
    Karsdal, M.
    Renzoni, E.
    Wells, A. U.
    Fahy, W.
    Oballa, E.
    Porte, J.
    Saini, G.
    Johnson, S.
    Wain, L.
    Molyneaux, P. L.
    Maher, T.
    Stewart, I.
    Jenkins, G.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2024, 209
  • [8] Machine learning of cell population data, complete blood count, and differential count parameters for early prediction of bacteremia among adult patients with suspected bacterial infections and blood culture sampling in emergency departments
    Chang, Yu-Hsin
    Hsiao, Chiung-Tzu
    Chang, Yu-Chang
    Lai, Hsin-Yu
    Lin, Hsiu-Hsien
    Chen, Chien-Chih
    Hsu, Lin-Chen
    Wu, Shih-Yun
    Shih, Hong-Mo
    Hsueh, Po-Ren
    Cho, Der-Yang
    JOURNAL OF MICROBIOLOGY IMMUNOLOGY AND INFECTION, 2023, 56 (04) : 782 - 792
  • [9] Machine Learning Approach to Predicting COVID-19 Disease Severity Based on Clinical Blood Test Data: Statistical Analysis and Model Development
    Aktar, Sakifa
    Ahamad, Md Martuza
    Rashed-Al-Mahfuz, Md
    Azad, Akm
    Uddin, Shahadat
    Kamal, Ahm
    Alyami, Salem A.
    Lin, Ping-, I
    Islam, Sheikh Mohammed Shariful
    Quinn, Julian M. W.
    Eapen, Valsamma
    Moni, Mohammad Ali
    JMIR MEDICAL INFORMATICS, 2021, 9 (04)