Vertex-disjoint K1 + (K1 ∪ K2) in K1,4-free graphs with minimum degree at least four

被引:0
|
作者
Yun Shu Gao
Qing Song Zou
机构
[1] Ningxia University,School of Mathematics and Computer Science
[2] Xidian University,Department of Mathematics
关键词
Forbidden graphs; Vertex-disjoint subgraphs; Minimum degree; 05C35; 05C70;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is said to be K1,4-free if it does not contain an induced subgraph isomorphic to K1,4. Let k be an integer with k ≥ 2. We prove that if G is a K1,4-free graph of order at least 11k-10 with minimum degree at least four, then G contains k vertex-disjoint copies of K1 + (K1 ∪ K2).
引用
收藏
页码:661 / 674
页数:13
相关论文
共 50 条
  • [1] Vertex-disjoint K1 + (K1 ∨ K2) in K 1,4-free Graphs with Minimum Degree at Least Four
    Gao, Yun Shu
    Zou, Qing Song
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (04) : 661 - 674
  • [2] Vertex-disjoint K1+(K1 ∪ K2) in K1,4-free Graphs with Minimum Degree at Least Four
    Yun Shu GAO
    Qing Song ZOU
    Acta Mathematica Sinica(English Series), 2014, 30 (04) : 661 - 674
  • [3] Vertex-disjoint copies of K1 + (K1 ∨ K2) in claw-free graphs
    Fujita, Shinya
    DISCRETE MATHEMATICS, 2008, 308 (09) : 1628 - 1633
  • [4] Vertex-disjoint copies of K1,t in K1,r-free graphs
    Jiang, Suyun
    Chiba, Shuya
    Fujita, Shinya
    Yan, Jin
    DISCRETE MATHEMATICS, 2017, 340 (04) : 649 - 654
  • [5] Vertex-disjoint triangles in K1,t-free graphs with minimum degree at least t
    Zhang, Xin
    Li, Na
    Wu, Jian-Liang
    Yan, Jin
    DISCRETE MATHEMATICS, 2010, 310 (19) : 2499 - 2503
  • [6] Vertex-disjoint K1,t's in graphs
    Fujita, S
    ARS COMBINATORIA, 2002, 64 : 211 - 223
  • [7] Vertex-disjoint stars in K1,r-free graphs
    Jiang, Suyun
    Li, Hao
    Yan, Jin
    DISCRETE APPLIED MATHEMATICS, 2021, 302 : 189 - 197
  • [8] Disjoint K1,4 in claw-free graphs with minimum degree at least four∗
    1600, Charles Babbage Research Centre (103):
  • [9] Vertex -disjoint copies of K1,3 in K1,r-free graphs
    Jiang, Suyun
    Yan, Jin
    DISCRETE MATHEMATICS, 2016, 339 (12) : 3085 - 3088
  • [10] Cyclability in k-connected K1,4-free graphs
    Flandrin, Evelyne
    Gyori, Ervin
    Li, Hao
    Shu, Jinlong
    DISCRETE MATHEMATICS, 2010, 310 (20) : 2735 - 2741