Jackson's integral of the Hurwitz zeta function

被引:6
|
作者
Kurokawa N. [1 ]
Mimachi K. [1 ]
Wakayama M. [2 ]
机构
[1] Department of Mathematics Tokyo Institute of Technology, Oh-okayama Meguro
[2] Faculty of Mathematics, Kyushu University
关键词
double sine function; Hurwitz's zeta; Jackson's integral; Lerch's formula; Raabe's integral formula;
D O I
10.1007/BF03031427
中图分类号
学科分类号
摘要
We give a Jackson q-integral analogue of Euler's logarithmic sine integral established in 1769 from several points of view, specifically from the one relating to the Hurwitz zeta function. © 2007 Springer.
引用
收藏
页码:43 / 56
页数:13
相关论文
共 50 条
  • [41] On the Poincaré expansion of the Hurwitz zeta function
    Bujar Fejzullahu
    Lithuanian Mathematical Journal, 2021, 61 : 460 - 470
  • [42] Sums involving the Hurwitz zeta function
    Kanemitsu, S
    Kumagai, H
    Yoshimoto, M
    RAMANUJAN JOURNAL, 2001, 5 (01): : 5 - 19
  • [43] REMARK ON THE HURWITZ ZETA-FUNCTION
    APOSTOL, TM
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (05) : 370 - 370
  • [44] Sums Involving the Hurwitz Zeta Function
    Shigeru Kanemitsu
    Hiroshi Kumagai
    Masami Yoshimoto
    The Ramanujan Journal, 2001, 5 : 5 - 19
  • [45] Real zeros of the Hurwitz zeta function
    Matsusaka, Toshiki
    ACTA ARITHMETICA, 2018, 183 (01) : 53 - 62
  • [46] Some Approximations with Hurwitz Zeta Function
    Aygunes, Aykut Ahmet
    FILOMAT, 2020, 34 (02) : 528 - 534
  • [47] Integral representations of the multi-parameter Hurwitz-Lerch zeta function and applications
    Mehrez, Khaled
    Agarwal, Praveen
    JOURNAL OF ANALYSIS, 2023, 31 (03): : 1707 - 1728
  • [48] Sharp inequalities for the Hurwitz zeta function
    Alzer, H
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2005, 35 (02) : 391 - 399
  • [49] Some Geometric Properties of Integral Operators Proposed by Hurwitz-Lerch Zeta Function
    Al-Janaby, Hiba F.
    Ghanim, F.
    Darus, M.
    14TH INTERNATIONAL SYMPOSIUM ON GEOMETRIC FUNCTION THEORY AND APPLICATIONS, 2019, 1212
  • [50] Maximum of exponential random variables, Hurwitz's zeta function, and the partition function
    Barak-Pelleg, Dina
    Berend, Daniel
    Kolesnik, Grigori
    STUDIA MATHEMATICA, 2022, 262 (02) : 151 - 182