Sharp inequalities for the Hurwitz zeta function

被引:3
|
作者
Alzer, H
机构
[1] Waldbröl, 51545
关键词
Hurwitz zeta function; inequalities;
D O I
10.1216/rmjm/1181069736
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the following double-inequality for the Hurwitz zeta function zeta(p, a) = Sigma(v=0)(infinity)(v + a)(-p). Let m and n be integers with m > n >= 0 and let a be a positive real number. Then we have for all real numbers P > 1: [GRAPHICS] Both bounds are best possible. Our theorem extends and refines a result of Bennett [2].
引用
收藏
页码:391 / 399
页数:9
相关论文
共 50 条