Jackson's integral of the Hurwitz zeta function

被引:6
|
作者
Kurokawa N. [1 ]
Mimachi K. [1 ]
Wakayama M. [2 ]
机构
[1] Department of Mathematics Tokyo Institute of Technology, Oh-okayama Meguro
[2] Faculty of Mathematics, Kyushu University
关键词
double sine function; Hurwitz's zeta; Jackson's integral; Lerch's formula; Raabe's integral formula;
D O I
10.1007/BF03031427
中图分类号
学科分类号
摘要
We give a Jackson q-integral analogue of Euler's logarithmic sine integral established in 1769 from several points of view, specifically from the one relating to the Hurwitz zeta function. © 2007 Springer.
引用
收藏
页码:43 / 56
页数:13
相关论文
共 50 条
  • [11] Definite integral of the logarithm hyperbolic secant function in terms of the Hurwitz zeta function
    Reynolds, Robert
    Stauffer, Allan
    AIMS MATHEMATICS, 2021, 6 (02): : 1324 - 1331
  • [12] Integral and computational representations of the extended Hurwitz-Lerch zeta function
    Srivastava, H. M.
    Saxena, Ram K.
    Pogany, Tibor K.
    Saxena, Ravi
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (07) : 487 - 506
  • [13] THE COMPOSITION OF HURWITZ-LERCH ZETA FUNCTION WITH PATHWAY INTEGRAL OPERATOR
    Jangid, Nirmal Kumar
    Joshi, Sunil
    Purohit, Sunil Dutt
    Suthar, Daya Lal
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 36 (02): : 267 - 276
  • [14] Certain Integral Operator Related to the Hurwitz-Lerch Zeta Function
    Wang, Xiao-Yuan
    Shi, Lei
    Wang, Zhi-Ren
    JOURNAL OF COMPLEX ANALYSIS, 2018,
  • [15] A New Family of Zeta Type Functions Involving the Hurwitz Zeta Function and the Alternating Hurwitz Zeta Function
    Kim, Daeyeoul
    Simsek, Yilmaz
    MATHEMATICS, 2021, 9 (03) : 1 - 11
  • [16] ON THE HURWITZ ZETA-FUNCTION
    GUO, JB
    CHINESE SCIENCE BULLETIN, 1991, 36 (19): : 1666 - 1667
  • [17] ON HURWITZ ZETA-FUNCTION
    RANE, VV
    MATHEMATISCHE ANNALEN, 1983, 264 (02) : 147 - 151
  • [19] ON THE HURWITZ ZETA-FUNCTION
    ZHANG, WP
    ILLINOIS JOURNAL OF MATHEMATICS, 1991, 35 (04) : 569 - 576
  • [20] The Stokes phenomenon associated with the Hurwitz zeta function ζ(s, a)
    Paris, RB
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2053): : 297 - 304